
ILLUMINA PROPRIETARY
Pub. No. 770-2009-020, current asof 09 Nov2011

RTA 1.13, HCS 1.5, andSCS2.10
Theory ofOperation

On-Instrument Primary Analysis

FOR RESEARCH USE ONLY

Introduction 3
How RTA Works 4
Input 5
Analysis Steps 7
Output 15
Appendix 18
Technical Assistance

This document and its contents are proprietary to Illumina, Inc. and its affiliates ("Illumina"), and are intended solely for the contractual
use of its customer in connection with the use of the product(s) described herein and for no other purpose. This document and its
contents shall not be used or distributed for any other purpose and/or otherwise communicated, disclosed, or reproduced in any way
whatsoever without the prior written consent of Illumina. Illumina does not convey any license under its patent, trademark, copyright, or
common-law rights nor similar rights of any third parties by this document.

The Software is licensed to you under the terms and conditions of the Illumina Sequencing Software License Agreement in a separate
document. If you do not agree to the terms and conditions therein, Illumina does not license the Software to you, and you should not use
or install the Software

The instructions in this document must be strictly and explicitly followed by qualified and properly trained personnel in order to ensure
the proper and safe use of the product(s) described herein. All of the contents of this document must be fully read and understood prior
to using such product(s).

FAILURE TO COMPLETELY READ AND EXPLICITLY FOLLOW ALL OF THE INSTRUCTIONS CONTAINED HEREIN MAY
RESULT IN DAMAGE TO THE PRODUCT(S), INJURY TO PERSONS, INCLUDING TO USERS OR OTHERS, AND DAMAGE TO
OTHER PROPERTY.

ILLUMINA DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE IMPROPER USE OF THE PRODUCT(S) DESCRIBED
HEREIN (INCLUDING PARTS THEREOF OR SOFTWARE) OR ANY USE OF SUCH PRODUCT(S) OUTSIDE THE SCOPE OF THE
EXPRESS WRITTEN LICENSES OR PERMISSIONS GRANTED BY ILLUMINA IN CONNECTION WITH CUSTOMER'S
ACQUISITION OF SUCH PRODUCT(S).

FOR RESEARCH USE ONLY

© 2011 Illumina, Inc. All rights reserved.

Illumina, illuminaDx, BaseSpace, BeadArray, BeadXpress, cBot, CSPro, DASL, DesignStudio, Eco, GAIIx, Genetic Energy, Genome
Analyzer, GenomeStudio, GoldenGate, HiScan, HiSeq, Infinium, iSelect, MiSeq, Nextera, Sentrix, SeqMonitor, Solexa, TruSeq,
VeraCode, the pumpkin orange color, and the Genetic Energy streaming bases design are trademarks or registered trademarks of
Illumina, Inc. All other brands and names contained herein are the property of their respective owners.

This software contains the SeqAn Library, which is licensed to Illumina and distributed under the following license:

Copyright © 2010, Knut Reinert, FU Berlin, All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3 Neither the name of the FU Berlin or Knut Reinert nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Introduction

RTA TheoryofOperations 3

Introduction

RTA is software that helps perform primary analysis for Illumina's sequencing
systems. HiSeq® and HiScanSQ™ systems are controlled by the HiSeq Control
Software (HCS), while the Genome Analyzer™ system is controlled by the Sequencing
Control Software (SCS). HCS performs analysis up to intensity extraction, while RTA
performs base-calling and quality scoring. For the Genome Analyzer, SCS handles the
first 5 cycles in images analysis, then hands over the image analysis to RTA.
RTA runs locally on the instrument control PC. RTA does not interact directly with
the control software, although the control software is configured by default to launch
RTA so that the user does not need to interact directly with RTA.
The purpose of this document is to describe the theory of operation for the RTA v1.13
application and the analysis algorithms performed in HCS v1.5 and SCS v2.10.

NOTE
This document does not describe RTA operation on the MiSeq.

In particular, it will answer the following questions:
} How does RTA work, at a high level?
} What are the inputs?
} What are the outputs?
} How does template generation work?
} How does registration and intensity extraction work?
} How are the color matrix and phasing parameters estimated?
} How does base-calling work?
} How does quality scoring work?
} What are the real-time metrics that are produced?
} How are sample preparation controls identified?
} How are errors handled?
} How are data transferred off the instrument PC?

4 Pub. No. 770-2009-020, current asof 09 Nov2011

HowRTAWorks

At the highest level, RTA is simply a state machine. It keeps track of the individual
state of each tile (a tile is a section of a lanes that is exactly the size of one image),
and when it detects that a tile is ready to advance to the next state, it does the
appropriate processing and advances the tile to that state. The conditions to advance
the state for a tile are:
} Ready to Pre-Process Cycle1 (performed by HCS, or by SCS during the first 5
cycles)

} Ready to Calculate Template (performed by HCS, or by SCS during the first 5
cycles)

} Ready to Register and Extract Cycle X (performed by HCS, or by SCS during the
first 5 cycles)

} Ready to Calculate Color Matrix (normally performed by HCS, or by SCS during
the first 5 cycles)

} Ready to Calculate Phasing
} Ready to Base Call Cycle X
} Ready to Quality Score Cycle X
RTA monitors the file system to determine when a tile is ready to advance state. For
example, a tile will be ready to Base Call Cycle 15 if:

1 a color matrix has been calculated for that tile
and

2 phasing has been calculated for that tile
and

3 a CIF file exists for that tile for cycle 15, and for all cycles in cycle 15’s phasing
window

The output of each processing step is always a file, which is then used as a trigger for
a subsequent processing step. For example, the output of the extraction step
(performed in HCS) is a cluster intensity file (cif), which is then used as a trigger for
the base calling step. The output of a base calling step is a base call file (bcl), which is
then used as a trigger for the quality scoring step, etc. If a tile is ready to advance in
more than one state (say, it's ready to base call cycle 16 and quality score cycle 13),
then quality scoring will take priority over base calling.
RTA is multi-threaded and can work with a configurable number of threads (see
Parameters in the Configuration.xml File on page 21). It is capable of working in the
background during a live sequencing run for real-time analysis. The way RTA
handles multi-threading is by giving each thread its own subset of tiles for which it is
responsible. This minimizes the possibility of thread contention.
When RTA starts up, it will automatically advance each tile's state to the latest
possible state, based on which files exist on the file system. In this way, RTA can be
shut down and restarted without affecting processing. For example, if RTA starts up
and detects that a tile already has its template file (.clocs), and already has its
intensity files for the first five cycles (.cif), then it will advance the tile to the "Waiting
to Extract Cycle 6" state.

Input

RTA TheoryofOperations 5

Input

Imaging Data

HCS
A flow cell generates data from the top and bottom surface of each flow cell lane. In
addition, up to three swaths can be scanned for each surface, allowing for a
maximum of six images per lane. Each image is divided into several "tiles" of
manageable size. The number of tiles is configurable in HCS and is 8 by default. Each
tile name is a four digit number which encodes the tile’s position.
} Highest order digit encodes the surface. 1 is for top, 2 is for bottom
} Second highest order digit encodes the swath. 1 is for first swath, 2 is for second
swath, 3 is for third swath

} Remaining two digits encode the tile. 01 through 08 is the default configuration.
For example, the fourth tile from the third swath of the bottom surface has tile
number 2304.

SCS
The Genome Analyzer IIx scans 120 tiles per lane by default, divided over two rows
of 60 tiles. Each tile corresponds to a unique location where sequencing images (A, C,
G, T) were taken. The Genome Analyzer allows only images from one surface, so
there is no distinction between top and bottom images.
SCS handles the first 5 cycles in images analysis, then hand over the image analysis
to RTA.

RTA Inputs
The primary input files that RTA requires are CIF (cluster intensity file) files (for SCS,
the primary input consists of CIFs for the first 5 cycles, and then the image files). The
files should reside in the standard HCS or SCS folder structure (e.g.,
.\Processed\L003\C4.1 for Lane 3, Cycle 4) and with the standard naming
convention (e.g., s_5_1101.cif for Lane 5, tile 1101). CIF files contain extracted
intensities for all four color channels. The format is described in the appendix.
RTA will also read the RunInfo.xml file which is generated automatically by the
control software. This file describes details of the current run. In particular, RTA looks
in this file for
} the name of the run
} the number of cycles in the run
} the number of cycles in each read
} whether or not a read is an index read
} the flowcell layout for the run (number of swaths, tiles, etc)
In addition, RTA uses a configuration file Configs\HiSeq.Configuration.xml (or
Configs\GA.Configuration.xml) which is detailed in the appendix. Typically, these
should not be changed from the defaults.
RTA also uses the SampleSheet to report the indexes count in the InterOp file
IndexMetric (see File Formats and Naming Conventions on page 25), and has the
following characteristics:

6 Pub. No. 770-2009-020, current asof 09 Nov2011

} By default RTA reads the file SampleSheet.csv from the run folder. If the file has a
different name, then you need to pass command line argument “samplesheet=”
when starting RTA (see Command-line Options for RTA on page 23).

} RTA can parse both the MiSeq and CASAVA format SampleSheet.
} The file will be copied to the Basecall directory so CASAVA can find it by default.
Finally, RTA can be called with command-line arguments. These arguments are also
detailed in the appendix. They include:
} Number of threads to use (defaults to 3)
} Copy Images flag (defaults to false)
} Copy Intensities flag (defaults to false)
} Control Lane (defaults to 0, i.e. none)
} Call Bases (defaults to true)
} ShowGUI (defaults to false)
} Number of cycles
} Instrument name
} Read to analyze (All, 1, 2, 3…)

A
nalysis

S
teps

RTA TheoryofOperations 7

Analysis Steps

Template Generation
The first step in the processing of image data is the generation of templates for each
tile. This is performed by HCS or SCS. A template defines the positions of each cluster
in the tile, and is used as a reference for the subsequent registration and intensity
extraction steps. The templates are defined in a coordinate system relative to the A
image of the first cycle.
In the current implementation, template generation requires the first four cycles of
image data. Once the fourth cycle for a tile has been imaged, its template can be
generated.
Template generation works by finding spots in each image, registering channel A
against channel C (counting on the cross-talk between A and C), then registering and
merging spots across all cycles to one template. More specifically, the following steps
are performed:

1 Find spots in all 16 images (4 channels, 4 cycles), along with the intensity and
noise value for each spot

2 Determine the golden cycle g which is the template cycle with the most spots in
channels A and C. The silver cycle, s, is the runner up cycle. Image A from the
golden cycle (Ag) becomes the frame of reference. Everything else registers against
it, directly or indirectly.

3 Register Cg against Ag, and merge Ag and Cg to form reference (A+C)g

4 Merge As and Cs to (A+C)s, and register against (A+C)g

5 Register Gg and Tg against (A+C)s.

6 Register all other images (An, Cn, Gn, Tn) against (A+C)g

7 Merge spot lists together so that each cluster is represented by one (and only one)
spot. Spots are ordered by their mean chastity (the minimum ratio of the brightest
intensity over the sum of the brightest and second-brightest intensities) on
template calls, and HCS or SCS considers spots from best to worst. HCS or SCS
also determines whether the lane is high- or low-diversity data by computing the
odds that two spots will match calls (agree on all base calls with chastity >0.7) by
chance.

8 On high-diversity data, a spot is rejected if (a) it fails the purity filter (chastity
<0.6 on two template cycles), (b) the spot is within radius R1 (1 pixel) of an
already-accepted spot, or (c) the spot is within radius R2 (3.5 pixels) of an
already-accepted spot with matching base calls.

9 On low-diversity data, a spot is rejected if (a) it fails the purity filter (chastity <0.6
on two template cyles), or (b) the spot is within the ClusterDistance radius (by
default 1.75 pixels) of an already-accepted spot.

8 Pub. No. 770-2009-020, current asof 09 Nov2011

10 The template is saved as a locations (.locs) file or a compressed locations (.clocs)
file, depending on configuration settings. By default, locations are compressed.

11 Extracted intensities are saved for all template cycles.
It is beneficial to do whatever pre-processing is possible for each template cycle as the
images become available so as to minimize the processing time required during
template generation. Towards that end, the following steps are performed for each
template cycle:

1 Find spots in each of the 4 channels

2 Determine intensity and noise values for all the spots in each image.

3 Save the positions of the spots for each image (.templocs)

4 Save the intensities for the spots (.tempints)
Once the template has been generated, each cycle's images can be registered and
extracted against the template. After cycles are registered, offsets are generated. There
are small pixel offsets among the four differently colored images taken of each tile,
which are due to slightly different optical paths. An .offsets file is created to correct
for this, and also corrects for linear rescaling of the image.

Registration and Intensity Extraction
The process of aligning the template of cluster positions onto a given image is
referred to as registration, and the process for determining an intensity value for each
cluster in the template for a given image is referred to as intensity extraction. For the
HiSeq and HiScanSQ, this step is performed by HCS, while for the Genome Analyzer,
SCS performs this for the firstfive cycles, while RTA processes the rest of the cycles.
For registration, the control software takes advantage of the random nature of the
cluster positions by using image correlation to align the template to the image. The
basic steps involved with image registration and extraction are:

1 Load the reference template for the current tile from its .locs file or .clocs file

2 Load the TIF files for the 4 channels for the current tile, current cycle

3 For each image:
a Identify an x, y shift by correlating subregions near the corners of the image

to a synthetic image of the template.
b Use the x,y shift of the four subregions to determine a full 6-parameter affine

transformation that transforms the template positions into the image
coordinates

c For each transformed cluster position, use bilinear interpolation to estimate
the intensity value of the cluster from a Laplacian pre-sharpened version of
the image

d Subtract background estimated from 32 x 32 pixel regions. Estimates are
based on the average of the dimmest four pixels in each region. Subtraction
interpolates between regions to remove discontinuities in the estimate.

e Normalize subtiles of the image such that the 90th percentiles of their
extracted intensities are equal. Tiles are divided into a 4 x 4 grid of subtiles

f Save the array of intensity values for the clusters in a cluster intensity file (cif)

A
nalysis

S
teps

RTA TheoryofOperations 9

Color Matrix Estimation
A Color Matrix is a 4x4 matrix that is used to correct for the cross-talk between
channels. For example, when a cluster lights up in the C channel, some of its light is
also collected in the A channel. RTA uses the color matrix to generate matrix
corrected intensities which have had this effect reduced or eliminated. The color
matrix, M, has entries Mij indicating the amount of observed intensity in channel i
generated by signal from nucleotide j.
HCS and SCS perform color matrix estimation during the process of template
generation, using cluster intensities from template cycles. After template generation,
RTA performs color matrix estimation for each read, using intensities from the first N
cycles of the read, where N is the number of template cycles. Color matrix estimation
first estimates cross-talk between each pair of channels. The procedure is:

1 Take the (x,y) intensities from these two channels and convert them to polar
coordinates (r, θ).

2 Compute a radius-weighted histogram of angles θ in the range [0, 90]

3 Identify the two local maxima, θ1 and θ2, in this histogram. (For channels that
have no cross-talk, θ1=0 and θ2=90). We take tan(θ1) as the matrix element for
cross-talk from channel x to channel y, and tan(90- θ2) as the cross-talk coefficient
in the opposite direction.

This procedure estimates the matrix entries Mij for i≠j. To complete the calculation of
the matrix:

1 Set the diagonal elements of the matrix to 1

2 Correct the intensities using this initial matrix (which orthogonalizes the four
color channels), and make preliminary base calls

3 Identify high-chastity (the minimum ratio of the brightest intensity over the sum
of the brightest and second-brightest intensities) base calls for each nucleotide.

4 Compute the 10th, 20th, …, 90th percentiles A1, …, A9 of the called intensities.
Similarly, compute percentiles Ci, Gi, Ti of the called C, G, T intensities.

5 Compute a normalization factor for the C channel, M22, by taking the mean value
of Ai / Ci across the percentiles. Similarly for the G and T channels.

6 Finally, normalize the overall matrix to have a determinant equal to 1.
After all tiles have had their color matrix estimated, HCS and SCS compute a median
matrix across all tiles and this is the matrix that will be used for the flowcell for the
entire run to generate the corrected intensities. The median is calculated element-by-
element. However, if a control lane is specified, then HCS and SCS will only use tiles
from that lane for calculating the median matrix that will be used for the entire
flowcell. The corrected intensities are then calculated by multiplying the observed
intensities by the inverse of the color matrix.

Phasing Estimation
RTA assumes that a fixed fraction of molecules in each cluster becomes "phased" at
each cycle, in the sense that those molecules fall one base behind in sequencing. If we
assume that p is that fraction, then after cycle 1, a given cluster has fraction (1-p) of
its molecules on cycle 2, with fraction p still on cycle 1. After cycle 2, (1-p)2 will be on

10 Pub. No. 770-2009-020, current asof 09 Nov2011

cycle 3, p(1-p) will be on cycle 2, and p2 will be on cycle 1. In general, after cycle n,
the fraction of molecules that will be phased by k cycles will be:

If p and n are "small" then the intensity contribution from molecules phased more
than 1 cycle (second order terms and higher) is small. In that case, we can take the
ratio of intensities of molecules that are phased by one cycle and those that are not
phased to get:

To estimate p in practice, RTA applies the following method for cycles 3 through 12.

1 Correct intensities for cross-talk using color matrix. Filter out clusters with
chastity < 0.6 (the minimum ratio of the brightest intensity over the sum of the
brightest and second-brightest intensities).

2 For channel "A", determine all clusters in cycle N for which "A" is not the
brightest intensity. Divide clusters into two groups: clusters where the previous
base call in cycle N-1 was "A" and clusters where the previous base call was not
"A".

3 For clusters where the previous call was "A", it is assumed that each cluster
intensity at cycle N consists of a phasing component p and a noise component s,
making the total signal p + s. Normalize each intensity by the intensity of the
brightest channel at cycle N to get (p + s) / I and then average for all clusters in
the group.

4 For clusters where the previous call was not "A", it is assumed that each cluster
intensity at cycle N consists of just a noise component s. Normalize each intensity
to get s / I and then average for all clusters in the group.

5 Set phasing at cycle N for channel "A" to the difference between average (p + s) / I
and average s / I.

6 Repeat for all color channels and take average to determine overall phasing at
cycle N.

7 Repeat for all cycles and determine best fit line. The slope is the estimated
phasing parameter for the entire run.

RTA estimates the pre-phasing parameter q the same way but uses cycles 2 through
11 and compares intensities against cycle N+1 rather than cycle N-1. If a control lane
is specified, only tiles from that lane are used to calculate these parameters. If a read
has less than 12 cycles, the phasing and pre-phasing parameters are defaulted to 0.
Once the phasing and pre-phasing parameters are calculated, RTA creates a phasing
matrix to model phasing effects. This is done by creating an N x N matrix where N is
the total number of cycles. Rows represent cycles and columns represent template
termination position. Without phasing or pre-phasing, termination position is
expected to match the cycle number at any given cycle. In other words, the probability
that the termination position at cycle n is equal to position n is 1, and 0 elsewhere.
For 3 cycles, the matrix would look like:

1 0 0
0 1 0
0 0 1

A
nalysis

S
teps

RTA TheoryofOperations 11

With phasing and pre-phasing, there are now three probabilities to consider. First, the
probability that the position at cycle n is equal to n-1 is p, where p is the phasing
parameter previously calculated. Second, the probability that the position at cycle n is
equal to n + 1 is q, where q is the pre-phasing parameter. Third, the probability that
the position matches the cycle number, i.e. position at cycle n is equal to n, is now 1 -
p - q. Thus, the probability that the position at cycle i is j, or P(i,j), is the sum of 3
contributing probabilities:
} p * P(i-1, j): the probability that phasing occurred; position did not change from
previous cycle

} (1-p-q) * P(i-1,j-1): the probability that no phasing or pre-phasing occurred;
position incremented 1 from previous cycle

} q * P(i-1,j-2): the probability that pre-phasing occurred; position incremented 2
from previous cycle

With this definition, RTA builds the following phasing matrix.

Pos j = 1 Pos j = 2 Pos j = 3 ... Pos j = N

1 (1-p-q) q 0 ... 0

2 p * P(1,1) (1-p-q) * P(1,1) +
p * P(1,2)

q * P(1,1) +
(1-p-q) * P(1,2) +
p * P(1,3)

... 0

...

N p * P(N-
1,1)

(1-p-q) * P(N-1,j-1)
+
p * P(N-1,j)

q * P(N-1,j-2) +
(1-p-q) * P(N-1,j-1)
+
p * P(N-1,j)

... q * P(N-1,N-2) +
(1-p-q) * P(N-1,N-1)
+
p * P(N-1,N)

To phase correct intensities for a given cycle, RTA takes the inverse of the phasing
matrix and extracts the matrix row corresponding to the cycle. Probabilities less than
a threshold of 0.1 are set to 0, thus creating a phasing window which is applied to
the vector of observed intensities values. Essentially, the vector of actual intensities
for cycles 1 through N is the product of phasing matrix inverse and observed
intensities for cycles 1 through N.
Ia = M-1 x Io

Base Calling
Base calling refers to the process of determining a base call (A, C, G, T) for every
cluster of a given tile at a specific cycle. In order to base-call, intensities must be
corrected for channel cross-talk and for phasing and pre-phasing. The pre-phasing
correction implies that base calling will always lag intensity extraction, as knowledge
of future cycles' intensities are required in order to correct for pre-phasing. In
addition, base calling takes lower priority than registration and extraction. That is,
base calling will not occur for a tile if it is possible to register and extract some
subsequent cycle. The reason for this is to remove images from the local hard drive as
quickly as possible, since these image files can fill up the local drive. The images are
not needed after extraction and so are deleted once extraction occurs.
Base calling itself is a simple procedure. The relevant intensity files for neighboring
cycles (determined by the size of the phasing window) are loaded and color-corrected

12 Pub. No. 770-2009-020, current asof 09 Nov2011

using the color matrix. Those values are then used to determine a phasing-corrected
intensity vector for the current cycle. Each cluster will receive a call based on the
brightest phasing-corrected intensity for that cluster.
Once a preliminary base call has been made, RTA applies a refined color matrix, also
known as adaptive color matrix. Adaptive matrix can correct for shifts in the relative
intensities of the four color channels over the course of the run, or between portions of
a tile image. The adaptive color matrix is determined, for a particular tile and cycle,
 using the following algorithm:

1 Bin clusters into 512x683 regions (configurable) by pixel position

2 For each bin:
a Set aside base calls with chastity < 0.7 (the minimum ratio of the brightest

intensity over the sum of the brightest and second-brightest intensities)
b If any channel has < 5% basecalls out of total basecalls, skip adaptive matrix

correction
c Calculate the matrix entries based on the median called intensities for each

color channel
d Orthogonalize and normalize matrix
e Apply matrix to all clusters in block

Final base calls are made on the fully-corrected intensities after the adaptive matrix is
applied. The bin size used in the adaptive matrix can be modified (or the function
can be disabled) through the UseAdaptiveMatrix configuration parameter (see
Appendix 1).
Base calls are saved to base call files (bcl) and corrected intensities are saved to dif
(dif) files. The dif files are used for quality scoring. The bcl files are binary files with 1
byte per call. The low order 2 bits represent the base call, and the high order 6 bits
represent the quality score. Until quality scoring is performed for a tile, the quality
score portion of the byte is set to 0. A byte value of zero is reserved for no-calls.

Quality Scoring
Quality scoring refers to the process of assigning a quality score to each base call. The
quality score is typically quoted as QXX where the XX is the score and it means that
that particular call has a probability of error of 10^(-XX/10). For example Q30 equates
to an error rate of 1 in 1000, or 0.1% and Q40 equates to an error rate of 1 in 10,000 or
0.01%.
In RTA, quality scoring is performed by calculating a set of predictors for each base
call, and using those predictor values to look up the quality score in a quality table.
The quality table is generated using a modification of the Phred algorithm on a
calibration data set representative of run and sequence variability. There are six
predictors for the model:
} Hexamer Score: Examines hexamers and returns an enrichment factor that
reflects how much the hexamer is enriched near the onset of End Anchored
Maximal Scoring Segments (EAMSS). EAMSS masks the ends of reads that start
with good reliability but transfer to a state of low reliability.

} Motif accumulation: Maintains a cumulative sum of the Hexamer Score
predictor, accounting for how difficult the sequence context has been in the prior
cycles of the read.

} Penultimate chastity: Measures early read quality in the first 25 bases based on
the second worst chastity value.

A
nalysis

S
teps

RTA TheoryofOperations 13

} Online overlap: Measures the separation between the foreground called
intensities and the background intensities.

} Shifted Purity G adjustment: measures the separation of the signal from the noise
for the current base call only, while also accounting for G quenching effects.

} Endiness: Tracks how close the read is to completion.
After calculating the quality scores, RTA identifies reads where the second worst
chastity in the first 25 base calls is below a threshold, and marks those reads as poor
quality data. This is called read filtering so clusters that meet this cutoff are referred
to as having "passed filter".
Once the quality score has been determined, RTA will re-save the bcl file, this time
with the quality scores encoded in the higher order 6 bits of each byte. RTA will also
save a qms file in the cycle directory, which is an empty file that indicates that
quality scoring has been performed for that cycle, and it will save a ctr file in the lane
directory. The ctr files store values that will be used for subsequent cycle quality
scoring, rather than having to recompute those values when the next cycle is quality
scored.

Alignment
RTA compares each cluster to a prespecified list of control sequences at cycle 52 of
each read (or the last cycle for experiments in which a read has fewer than 52
sequencing cycles), and reports which reads aligned to the control sequences in the
control file. The controls are specified in a fasta file distributed with RTA, and are
designed to identify specific sample preparation failure modes. The fasta file specifies
the control sequences, their identifiers, and the error tolerance required for a match. In
particular, the sample preparation controls evaluate A-tailing (CTA), end repair
(CTE1 and CTE2), and ligation (CTL). RTA requires that a read have at most 1
difference to a control to be counted as a match, where the difference can be a
substitution, insertion, or deletion in the read with respect to the control sequence.
The control aligner is implemented with the Seqan aligner library
(http://www.seqan.de). It builds an index structure on the control sequences upon
initialization. When reads are presented for inspection, they are first subjected to a
fast pre-screening procedure, using the pre-built index in order to determine if the
read should be checked in detail. If a read is flagged for further inspection, then it is
checked with an efficient verification algorithm.
The pre-build index implements a PEX strategy. The intuition is that if one sequence
has at most k differences with respect to another (where k is much less than the
sequence length), then there will be exact agreement among short subsequences of the
two sequences. For example, consider the following two sequences that differ at two
positions.

Sequence 1: ATAGGACCAGGATTATA

Sequence 2: ATAGTACCAGGCTTATA

Sequence 1 has two substitutions with respect to sequence 2, and three shared
subsequences with Sequence 2 (ATAG, ACCAGG, TTATA). This intuition is
implemented in an index by recording the locations and identities of short, non-
overlapping k-mers at the beginning of each of the control sequences. When a read is
pre-screened, the first few non-overlapping k-mers in the read are checked against the
index. If enough of them occur in approximately the expected location in a control
sequence, then the read is compared to the control using a fast verification. For
example, consider following two example sequences, and the corresponding PEX
index:

Sequence 1: ATACGACGGCCAACCC

14 Pub. No. 770-2009-020, current asof 09 Nov2011

Sequence 2: ACGGTCCGTTCCAGGTTG

PEX index: (ATACG: Sequence 1 Position 0), (ACGGC: Sequence 1, Position 5),
(ACGGT: Sequence 2, Position 0), (CCGGTT: Sequence 2, Position 5)

If a sequencing read agrees with one of the indexed control sequences (Sequence 1, for
instance) to within at most one edit distance error, then it must have either an exact
occurrence of ATACG in position zero or position one, or it must have an exact
occurrence of ACGGC at one of positions four, five, or six. For additional specificity,
RTA indexes and checks an additional k-mer (so for edit distance one, only one exact
occurrence is required, but RTA indexes three k-mers and checks for the presence of
two).
When a read contains enough k-mers at the expected positions such that it could
agree with a control sequence, then the control sequence is aligned to the read using
Myer's bit vector algorithm. Myer's bit vector algorithm is an efficient alignment
algorithm that uses bit level arithmetic to compute several dynamic programming
matrix entries in parallel, and is thus very fast for verification. If the verification
algorithm reveals that the read is within the specified error tolerance to the control,
then the identity of the match is recorded in the filter file.
In some contexts, a sequencing read will align to multiple controls. In this case, one
of the matching controls is chosen at random, and a bit flag is set in the filter file to
indicate an ambiguous alignment.

O
utput

RTA TheoryofOperations 15

Output

RTAOutputs
The primary output files that RTA produces are bcl and filter files. Each tile that is
analyzed will produce a bcl file for each cycle, which contains the base call and
associated quality score for every cluster. Each tile also produces a filter file, which
specifies whether or not a cluster passed filters. Additionally, RTA will produce stat
files which contain aggregated statistics for each cycle, and locs files which contain
the x, y position for every cluster. These output files can be used by downstream
processes.
RTA can also output intensity files (as generated by HCS or SCS), in the form of
cluster intensity files (cif). A single CIF file is generated for every cycle and every tile.
CIF files can be used as input to OLB for off-line base calling (see Restart Analysis
Using OLB on page 16).

Real TimeMetrics
RTA provides real-time metrics of run quality in two forms. The first is the Status.htm
page within the Data folder. This page offers several views.
} The Run Info view shows general run information such as run time and settings.
} The Tile Status view displays the current processing state and cycle of each tile.
} The Charts view displays average metrics for each tile visually across the
physical flow cell. Average metrics include cluster density, % cluster passing
filter, and intensity, focus quality, and % quality score greater than Q30 by color
and cycle.

} The Cluster Density view displays a box plot representing the distribution of
cluster density by lane. The data in this plot is populated as soon as the first
cycle is processed. However, during template generation, the number of clusters
in the temporary reference is only an estimate (actually, an under-estimate) of the
number of clusters in the final template, which is generated in cycle 4. Therefore
you will see the values change from cycle 1 through cycle 4. However, they will
not change after cycle 4. The data points used to generate this plot are written to
file "NumClusters by lane.txt" in the Data/reports directory.

} The Intensity & Focus Quality view displays two box plots. The first plot
represents the distribution of 90th percentile raw intensity values grouped by
cycle and color channel. This plot will give you an indication of the intensity
decay. The data points used to generate this plot are written to file "Intensity by
Color and Cycle.txt". The second plot represents the distribution of focus quality
grouped by cycle and color channel. The data points used to generate this plot are
written to file "FWHM by Color and Cycle.txt" (FWHM stands for full width at
half maximum).

The second form of real-time metrics is the InterOp files. InterOp files are binary files
containing tile, cycle, and read level metrics. These files can be viewed using the
Sequencing Analysis Viewer or parsed directly. The format of these files is specified
in the Appendix.

Data Transfer
Data are transferred to their final destination (the output directory) throughout the
run on a background thread, which is set to the lowest priority. When a processing

16 Pub. No. 770-2009-020, current asof 09 Nov2011

thread wants to copy an output file (e.g., a cif file) to its final destination, it simply
saves a .trans file in the Queued directory with a path to the file. The background
copy thread uses this as a signal to copy that file to its final destination. In this way,
file copying can lag behind processing (due to a slow network, for example) without
affecting processing times (at least until the disk fills up).

Error Handling
RTA uses files to determine the state of each tile. In this way, RTA is as robust as
possible to power outages or other crashes. When RTA is restarted, it will detect the
state of each tile based on the files that exist. Therefore, there should be no concern
that RTA is deleting images after it is finished processing them, for example, because
by definition, the image won't be deleted until the result files exist. If RTA is restarted,
it will detect the presence of the .cif file and continue processing without looking for
the original image that was used to create it.
RTA creates a Log.txt file in the Data\RTALogs directory. Whenever an error occurs,
it is logged in a separate ErrorLog.txt file. The analysis performed by HCS or SCS is
logged in IALog.txt file within the Logs\IALogs subdirectory of the run directory.
Errors are logged in IAErrorLog.txt. All four of these files are transferred to the final
output destination at the end of processing.
If an exception occurs that prevents successful processing at a step, sometimes RTA
will retry, depending on the nature of the exception. If RTA fails after all retries have
been exhausted, then RTA will produce the required output file(s) for that step but
populate it with blank values. In this way, processing is guaranteed to finish.

Restart analysis from .cifs
In some cases, it is desirable to restart analysis from the extraction step. This re-
analysis uses the original .cif files, but revises estimates of phasing and color matrix,
and generates new base calls and quality scores). For instance, on a methylation run
where the control lane was accidentally not specified, one can specify the control lane
and re-analyze from .cifs to get better results.
If you want to restart analysis from cifs, the standard solution is to use the Off-Line
Basecaller (OLB). You can also restart RTA. Both options are described below.

Restart Analysis Using OLB
The Off-Line Basecaller (OLB) can perform base calling for the HiSeq, HiScanSQ, or
the Genome Analyzer. The standard workflow is to perform base calling using RTA,
after which CASAVA performs alignment using the base calling results. If needed,
OLB provides the option to perform primary data analysis off-line.
The basic features of OLB are described in the Off-Line Basecaller User Guide.

Restart RTA
To run RTA from .cifs:

1 Update the RTA configuration file (HiSeq.configuration.xml or
GA.Configuration.xml):
a Optional: By default, the working directory for the reanalysis is {Run

Folder}\AltPath. To change the working directory, set
AlternateProcessedAndDataDirectory (e.g. to c:\temp); clean out any files
currently in that folder.

O
utput

RTA TheoryofOperations 17

b Make any other required modifications (e.g. ControlLane)

2 Run the RTA executable, and update the UI:
a Set the "Flowcell Image Directory" to the Images subfolder of the output folder

(e.g. c:\basecalls\FlowCellName\Images)
b Set the "Directory to Save Output Files" (e.g. c:\BaseCalls\Reanalysis)
c Check the “Analyze Offline From Intensities” checkbox
d Click the [Start] button

RTA TheoryofOperations

Appendix

HCS/SCS/RTA File Summary

File Name Location Description Created Deleted Trans-
ferred

Req for
2nd

level
analysis

Base call and
quality score
file

*.bcl Data\Intensities\
BaseCalls\Lane\
Cycle

Base call and quality
score for each cluster
with the quality score
encoded in the higher-
order 6 bits of each
byte

Every cycle at
base calling and
then resaved at
quality scoring

End of
processing

Y Y (BCL
converter)

Stats file *.stats Data\Intensities\
BaseCalls\Lane\
Cycle

Real time statistics for
each cycle

Every cycle at
base calling

End of
processing

Y Y (BCL
converter)

Positions file *_pos.txt Data\Intensities X and Y positions for
each cluster

At template
generation

End of
processing

Y Y (BCL
converter)

Filter file *.filter Data\Intensities\
BaseCalls\Lane

Flag indicating
whether or not a
cluster has passed
filter and if it was a
control

Cycle 25 End of
processing

Y Y (BCL
converter)

Sample sheet SampleSheet.csv Run Folder Describes samples and
indices

By user End of
processing

Y Y

Thumbnail
file

*.jpg Thumbnail_
Images\
Lane\Cycle

Thumbnail image for
each tile and color
channel

Every cycle at
imaging

End of
processing

Y N

Zprof file *.jpg.zprof Thumbnail_
Images\
Lane\Cycle

Z height at each line
of an image

Every cycle at
imaging

End of
processing

Y N

Color Matrix
file

*_matrix.txt Data\Intensities\
BaseCalls\Matrix

Matrix by tile,
aggregated by lane,
or aggregated across
the flowcell

Cycle 4 End of
processing

Y N

Phasing file *_phasing.txt,
*_phasing.xml

Data\Intensities\
BaseCalls\Phasing

Phasing by tile,
aggregated by lane,
or aggregated across
the flowcell

Cycle 12 End of
processing

Y Y (BCL
converter)

Phasing by
cycle file

*_cycle.txt Data\Intensities\
BaseCalls\Phasing

Phasing values for
first 12 cycles, used to
determine phasing
estimate

Cycle 12 End of
processing

Y N

Intensity file *.cif Data\Intensities\
Lane\Cycle

Raw intensity for each
cluster in all four
channels

Every cycle at
extraction

After base
calling

Optional,
N by
default

Y (if
running
OLB)

Error map *.errorMap Data\Intensities\
Lane\Cycle

Spatial map of error
counts in each 512 x
512 block

Every cycle at
basecalling

End of
processing

Y N

FWHMmap *.FWHMMap Data\Intensities\
Lane\Cycle

Spatial map of
average FWHM value
in each 512 x 512 block

Every cycle at
extraction

End of
processing

Y N

Image size ImageSize.dat Data Width and height
dimensions of a tile

Cycle 1 End of
processing

Y Y (if
running
OLB)

19 Pub. No. 770-2009-020, current asof 09 Nov2011

File Name Location Description Created Deleted Trans-
ferred

Req for
2nd

level
analysis

Compressed
template
locations file

*.clocs Data\Intensities\
Lane

Same as pos.txt except
compressed and
stored in binary
format

At template
generation

End of
processing

Y Y

Temporary
intensity file

*.int Processed\Lane\
Cycle

Intensities from each
spot in each channel in
cycle 1-4

Cycle 1-4 After
template
generation

N N

Temporary
spot locs

*.locs Processed\Lane\
Cycle

Spot locations for each
channel in cycle 1-4

Cycle 1-4 After
template
generation

N N

Transform
file

*.xform Processed\Lane\
Cycle 1

Affine transform
parameters

At template
generation

End of
processing

N N

Focus stats F_*.txt Processed\Focus Focus statistics from
HCS/SCS for
reporting in RTA

Every cycle at
extraction

End of
processing

N N

Intensity
stats

I_*.txt Processed\
Intensity

Intensity statistics
from HCS/SCS for
reporting in RTA

Every cycle at
extraction

End of
processing

N N

Corrected
intensity file

*.dif Processed\Lane\
Cycle

Intensity for each
cluster after matrix
and phasing
correction

Every cycle at
basecalling

After
quality
scoring

N N

Alignment
file

*.align Processed\Lane Flag indicating if a
cluster was aligned to
PhiX

At cycle 25 End of
processing

N N

Controls file *.control Processed\Lane Flag indicating if a
cluster was identified
as a control

At cycle 50 End of
processing

N N

Quality
scoring flag
file

*.qms Processed\Lane\
Cycle

Empty file indicating
quality scoring has
occurred for this cycle

Every cycle at
quality scoring

End of
processing

N N

Quality
metrics file

*.ctr Processed\Lane Intermediate file that
caches quality metrics
use for calculation of
quality score

Updated at base
calling, every
5th cycle

End of
processing

N N

Buffered
byte metrics

*.bbm Processed\Lane Intermediate file that
caches quality metrics
use for calculation of
quality score

Updated every
cycle at quality
scoring

End of
processing

N N

Buffered
float metrics

*.bfm Processed\Lane Intermediate file that
caches quality metrics
use for calculation of
quality score

Updated every
cycle at quality
scoring

End of
processing

N N

Tile Status TileStatus*.
bin

Processed\
TileStatus

Status of tile with
cluster density and
focus and intensity
values for each color
channel

Updated every
processing cycle

End of
processing

Y N

Transfer
Request

.trans Queued
directory

Path to the file to be
transferred by the
background copy
thread

Throughout When
transfer is
complete

N N

Intensities
config

config.xml Data\Intensities Configuration file
describing cycles

Updated every
cycle at

End of
processing

Y Y (if
running

RTA TheoryofOperations

File Name Location Description Created Deleted Trans-
ferred

Req for
2nd

level
analysis

imaged extraction OLB)
Basecall
config

config.xml Data\Intensities\
Basecall

Configuration file
describing cycles
basecalled

Updated every
cycle at
basecalling

End of
processing

Y Y (BCL
converter)

RTA
configuration

RTA
Configuration.
xml

Data\Intensities RTA configuration
settings for run

Start of run End of
processing

Y N

HCS
configuration

HiSeqControl
Software.
Options.cfg

Config HCS configuration
settings for run

Start of run End of
processing

Y N

Run info RunInfo.xml Run folder RTA run settings Start of run End of
processing

Y N

Run
parameters

runParamters.
xml

Run folder HCS run settings Start of run End of
processing

Y N

RTA start RTAStart.bat Config Script to launch RTA
with command line
options

Start of run End of
processing

Y N

Recipe <fc>.xml Recipe Full recipe of run Start of run End of
processing

Y N

Recipe state <fc>_RunState.
xml

Recipe Temporary file to
track where the run is
relative to the recipe

Updated
throughout

End of
processing

Y N

InterOp files *.bin InterOp Binary reporting files
for Sequencing
Analysis Viewer

Updated
throughout

End of
processing

Y N

HCS/SCS log *.log Logs Log of HCS/SCS run
events, one file
created per cycle

Updated
throughout

End of
processing

Y N

HCS/SCS
analysis log

IALog*.txt Logs\IALogs Log of HCS/SCS
analysis events, one
file per processing
thread plus one file
for general events

Updated
throughout

End of
processing

Y N

HCS/SCS
diag log

*.log Diag HCS/SCS diagnostic
logs

Updated
throughout

End of
processing

Y N

Start up log Log.txt Data\RTALogs Log of RTA start up
events

Start of run End of
processing

Y N

Error log *_Error.txt Data\RTALogs Log of RTA errors Updated
whenever an
error is thrown

End of
processing

Y N

Copy log *_Copy Thread.
txt

Data\RTALogs Log of RTA copy
events

Updated
throughout

End of
processing

Y N

Delete log *_Delete
Thread.
txt

Data\RTALogs Log of RTA delete
events

Updated
throughout

End of
processing

Y N

General log *_Other.txt Data\RTALogs Log of RTA general
events

Updated
throughout

End of
processing

Y N

Processing
log

*_Processor *.
txt

Data\RTALogs Log of RTA
processing events

Updated
throughout

End of
processing

Y N

Status
Summary

Status.xml Data Processing status and
real time metric
charts, uses status.xsl
style sheet in same dir

updated
throughout

End of
processing

Y N

21 Pub. No. 770-2009-020, current asof 09 Nov2011

File Name Location Description Created Deleted Trans-
ferred

Req for
2nd

level
analysis

Status
Template
files

* Data\
Status_Files

Template files (htm,
xsl, js) for status page

Start of run End of
processing

Y N

Status data
files

* Data\reports Data files and images
for status page

Updated
throughout

End of
processing

Y N

Offsets
summary

Offsets.txt Data\Intensities\
Offsets

Offsets for every tile,
every channel, every
cycle

Updated every
cycle at
extraction

End of
processing

Y N

SubTile
Offsets

SubTileOffsets.
txt

Data\Intensities\
Offsets

Subtile offsets for
every tile, every
channel, every cycle

Updated every
cycle at
extraction

End of
processing

Y N

Image
analysis
complete flag

ImageAnalysis_
Netcopy_
complete*

Run folder File indicating that
processing has
completed for a read

End of read
processing

End of
processing

Y N

Basecall
complete flag

Basecalling_
Netcopy_
complete*

Run folder File indicating that all
post processing has
completed for a read

End of read
post processing

End of
processing

Y N

Parameters in the Configuration.xml File

Option Description Default

NumberOfThreads Number of processing threads to use. 4

NumberOfLanes Number of lanes in a flowcell. 8

TilesPerLane Number of tiles in a lane. 32 for
HiSeq
120 for
GA

ControlLane Which lane is to be used as a control lane for Matrix and
Phasing estimation.

0
(indicates
no
control
lane)

PostProcessEventFile Allow a batch file or exe to be called at the end of RTA
analysis. Arguments are last extracted cycle number, local
run directory, output directory, and read type. Read type
distinguishes which read has completed.

No
command
(disabled)

MinimumDiskSpaceGB Minimum disk space on the image drive before RTAwill
pause processing.

1 GB free
disk space

CopyIntensities Copy CIF files to the output directory. false

ClusterDistance Nominal distance between clusters. 1.75 (set
in HCS)

ClusterFWHM Cluster full width at half maximum. 0 (set in
HCS)

DetectionThreshold Detection threshold value. 3.5 (set in

RTA TheoryofOperations

Option Description Default

HCS)

FirstTemplateCycle First cycle to start template generation. 1

TemplateCycleCount Number of cycles to use for template generation. 4 for
HiSeq
5 for GA

QualityScoreType Quality score algorithm. v6 for
HiSeq
v4 for GA

NullRightColumn Number of pixels to ignore on right of image, these pixels
are used for debugging data

6 (set in
HCS)

UnmanagedImageAnalysisFlags Unmanaged image analysis flag. 5

ProcessOnlyLanes Comma separated list of lanes to process. None
(process
all)

ProcessOnlyTiles Comma separated list of tiles to process. None
(process
all)

UseLaneAggregation Aggregate phasing and matrix data by lane instead of
across whole slide. Recommended when no control lane
is used.

true

NumAdaptiveMatrixBlocks Number of sub-tiles to use in adaptive matrix algorithm.
Possible values are {0, 1, 4, 9, 12} . Value 0 turns off
adaptive matrix.

12

UseFWHM Use full width half max algorithm. true
(set in
HCS)

FixTapBoundaries Flag to normalize tap boundaries on new images. true (set
in HCS)

AlternateProcessedAndDataDirectory Alternate location for processed files. None
(disabled)

CopyDIFFiles Copy DIF files to final network location. false

ProcessCompleteEventFile Name of program to run at end of processing
completion. Arguments are last extracted cycle number,
local run directory, output directory, and read type.

None
(disabled)

EnableDiskLocking Turn on for local disk processing, turn off for network
processing of image files.

true

EnableProcessing Turn on to enable all processing, turn off to stop after
image processing.

true

MaximumNumberOfQueuedFiles Max number of queued files. 10,000,000

AltQualityTable Alternate Quality Table to use. None
(disabled)

23 Pub. No. 770-2009-020, current asof 09 Nov2011

Option Description Default

DeleteIntermediateDirectoryAtTheEnd Delete all intermediate Processed directory after
processing.

false

DeleteAllLocalFilesAtTheEnd Delete all local files after processing. false

VerifyFilesAfterNetworkCopy Option to verify contents of files after they are copied to
the network.

true

MinutesToDelayImageFileDeletion Delay deletion of image files to allow manual inspection
of images.

0

TransferIntervalInMinutes Update interval minutes for reporting files. 2

TransferBCLFilesToTheNetwork Transfer bcl files to network. Also transfers stat files true

SaveSecondBaseFile Option to save second base call file false

Command-line Options for RTA
Command line options are auto-populated by HCS in the RTAStart.bat file. Available
options are:

Option Description Default

First Argument Input Directory (expected to be <run
folder>\Images)

no default -> must be
specified here or in user
interface

Second Argument Output Directory (where the final output
will be transferred at the end of
processing)

no default -> must be
specified here or in user
interface

Threads Number of processing threads to use 2

ShowGUI Whether or not to show the RTAmain
window on start up

1 (true)

Read All, 1, 2, or 3 etc. All

Control Lane Control lane 0 (none)

CopyIntensityFilesToNetwork Whether or not to copy intensity files (cif)
to output folder

0 (false)

InstrumentType Determines which instrument
configuration.xml to load

hiseq

AltProcessedDirectory Directory to use as working directory none

AnalyzeOfflineFromIntensities Whether or not to analyze from cifs 0 (false)

CopyImages Whether or not to copy images 0 (false)

DeleteImages Delete images after processing 1 (true)

samplesheet Needed if sample sheet does not have the
standard name

SampleSheet.csv

RTA TheoryofOperations

Events
HCS, SCS, and RTA can be configured to run external scripts when an event occurs.
This can be done in HiSeqControlSoftware.Options.cfg or *Configuration.xml by
setting the event option to the filepath of the script to run.
RTA events are fired with the following arguments:
} Cycle number
} Local run directory
} Output directory
} Read type {”READ1”, “READ2”, “INDEX”}
For example, for an RTA event you add a line such as this one to the RTA
configuration file:

<PostProcessEventFile>C:\myScriptFolder\RTA_

Finished.cmd<PostProcessEventFile/>

HCS/SCS events are fired with the following arguments:
} Cycle number
} Local run directory
} Output directory
} Run type {“Paired End Indexing Run”, “Paired End Run”, “Single Read Indexing
Run”, “Single Read Run”, “No Read Run”}

} Event type {“BeginRun”, “EndRun”, “BeginImagingCycle”, “EndImagingCycle”,
“BeginChemistryCycle”, “EndChemistryCycle”}

Event Name Description Application

ExtractCycleEventFile Fired after all tiles have completed an extraction cycle RTA

BaseCallCycleEventFile Fired after all tiles have completed a base called cycle RTA

QualityCycleEventFile Fired after all tiles have completed a quality scoring
cycle

RTA

CIFCycleCopiedCompletedEventFile Fired after all tiles have copied a cycle’s worth of cifs
(only fired if cif copy is enabled)

RTA

BCLCycleCopiedCompletedEventFile Fired after all tiles have copied a cycle’s worth of bcls RTA

PostProcessEventFile Fired after all tiles have completed processing a read,
does not include clean up processing

RTA

ProcessCompleteEventFile Fired after all processing for the entire run has
completed

RTA

StartRunCommandScript Fired when a run is started HCS/SCS

EndRunCommandScript Fired when a run ends HCS/SCS

StartImagingCommandScript Fired when the instrument begins imaging a cycle HCS/SCS

EndImagingCommandScript Fired when the instrument completes imaging a cycle HCS/SCS

StartChemistryCommandScript Fired when the instrument starts chemistry for a cycle HCS/SCS

EndChemistryCommandScript Fired when the instrument ends chemistry for a cycle HCS/SCS

25 Pub. No. 770-2009-020, current asof 09 Nov2011

RTA Process Flow
The following diagram shows the general process flow.

File Formats and Naming Conventions
Conventions:

RTA TheoryofOperations

} <lane> is the lane (1..8)
} <read> is the read (1..3 for indexed PE)
} <tile> is the tile (1..120)
} <cycle> is the cycle (1..209 for 101x7x101)

BCL files
The bcl files can be found in the processed directory: <run
directory>\Data\Intensities\Basecall\L<lane>\C<cycle>.1 and they are named as
follows: s_<lane>_<tile>.bcl. (* note small s)
Format:

bytes 0-3: unsigned 32bits little endian integer: number N of clusters
bytes 4-(N+3): unsigned 8bits integer:
• bits 0-1 are the bases respectively [A, C, G, T] for [0, 1, 2, 3]:
• bits 2-7 contain the quality score (bit 2 is the LSB)
• All bits ‘0’ in a byte is reserved for no-call
Where N is the cluster index

Filter files
The filter files can be found in the directory: <run
directory>\Data\Intensities\Basecall\L<lane> and they are named as follows: s_
<lane>_<tile>.filter. (*note small letter s).
Format:
Filter files start with the following header.

bytes 0-3: zero value (backwards compatibility)
bytes 4-7: version number (2)
bytes 8-11: number of records

Then each record has 1 byte for the passed-filters flag.

Control files
The control files can be found in the directory: <run
directory>\Data\Intensities\Basecall\L<lane> and they are named as follows: s_
<lane>_<tile>.control. (*note small letter s).
Format:
Control files start with the following header.

bytes 0-3: zero value (backwards compatibility)
bytes 4-7: version number (2)
bytes 8-11: number of records

Then each record has 2 bytes, representing an unsigned short which indicates the
identity of the in-line sample control to which the read was matched, or is zero if the
read wasn't identified as a control.

Stats files
The stats files can be found in the directory: <run
directory>\Data\Intensities\Basecalls\L<lane>\C<cycle>.1 and they are named as
follows: s_<lane>_<tile>.stats.

Byte 0: Cycle = size of integer
Byte 1: Average Cycle Intensity = size of double

27 Pub. No. 770-2009-020, current asof 09 Nov2011

Byte 2: All A = size of double
Byte 3: All C = size of double
Byte 4: All G = size of double
Byte 5: All T = size of double
Byte 6: Call A = size of double
Byte 7: Call C = size of double
Byte 8: Call G = size of double
Byte 9: Call T = size of double
Byte 10: Num A = size of integer
Byte 11: Num C = size of integer
Byte 12: Num G = size of integer
Byte 13: Num T = size of integer
Byte 14: Num X = size of integer
Byte 15: Num All A = size of integer
Byte 16: Num All C = size of integer
Byte 17: Num All G = size of integer
Byte 18: Num All T = size of integer

SCL files
The scl files, if configure to be saved, can be found in the processed directory: <run
directory>\Processed\L<lane>\C<cycle>.1 and they are named as follows: s_<lane>_
<tile>.scl. (* note small s)
Format:

bytes 0-3: 32bit integer: number N of clusters
bits (N * 2 +4) - (N * 2 +5): bases respectively [A, C, G, T] for [0, 1, 2, 3]:
Where N is the cluster index

Pos files
The pos files can be found in the processed directory: <run directory>\Data
\Intensities and they are named as follows: s_<lane>_<tile>_pos.txt. (* note small s)
These are text files with 2 columns and <number of cluster> rows. First column is X
coordinate and the second column is the Y coordinate. Each line has a <cr><lf> at the
end.
Generation of pos files is optional. Template generation will run faster if pos files are
disabled.

Locs files
The locs files can be found in the processed directory: <run
directory>\Data\Intensities\L<lane> and they are named as follows: s_<lane>_
<tile>.locs.

Clocs files
The clocs files are compressed versions of locs file and can be found in the processed
directory: <run directory>\Data\Intensities\L<lane> and they are named as follows:
s_<lane>_<tile>.clocs.

CIF files
The .cif file format is as follows:

RTA TheoryofOperations

bytes 0-2: CIF
byte 3: Version number (1)
byte 4: Precision. Can be 1 for a file storing intensities as signed bytes, 2 for
values stored as signed 2-byte integers, or 4 for values stored as 4-byte floating-
point values. Normal .cif files use 2 bytes of precision.
bytes 5-6: Cycle (unsigned short)
bytes 7-8: 1 (unsigned short)
bytes 9-12: Cluster count (unsigned int)
The remainder of the file stores the A intensities, then C, then G, then T. The
intensities for each channel take up (Precision * ClusterCount) bytes.

CTR files
The ctr files can be found in the processed directory: <run
directory>\Processed\L<lane> and they are named as follows: s_<lane>_<tile>.ctr.

DIF files
The dif files can be found in the processed directory: <run
directory>\Processed\L<lane>\C<cycle>.1 and they are named as follows: s_<lane>_
<tile>.dif.

QMS files
The qms files can be found in the processed directory: <run
directory>\Processed\L<lane>\C<cycle>.1 and they are named as follows: s_<lane>_
<tile>.qms.

InterOp files
The interop files can be found in the directory: <run directory>\InterOp.
Extraction Metrics (ExtractionMetricsOut.bin)
Contains extraction metrics such as fwhm (full width at half maximum) scores and
raw intensities
Format:

byte 0: file version number (2)
byte 1: length of each record
bytes (N * 38 + 2) - (N *38 + 39): record:

2 bytes: lane number (uint16)
2 bytes: tile number (uint16)
2 bytes: cycle number (uint16)
4 x 4 bytes: fwhm scores (float) for channel [A, C, G, T] respectively
2 x 4 bytes: intensities (uint16) for channel [A, C, G, T] respectively
8 bytes: date/time of CIF creation

Where N is the record index
Quality Metrics (QualityMetricsOut.bin)
Contains quality score distribution
Format:

byte 0: file version number (4)
byte 1: length of each record
bytes (N * 206 + 2) - (N *206 + 207): record:

29 Pub. No. 770-2009-020, current asof 09 Nov2011

2 bytes: lane number (uint16)
2 bytes: tile number (uint16)
2 bytes: cycle number (uint16)
4 x 50 bytes: number of clusters assigned score (uint32) Q1 through Q50

Where N is the record index
Error Metrics (ErrorMetricsOut.bin)
Contains cycle error rate as well as counts for perfect reads and read with 1-4 errors
Format:

byte 0: file version number (3)
byte 1: length of each record
 bytes (N * 30 + 2) - (N *30 + 11): record:

2 bytes: lane number (uint16)
2 bytes: tile number (uint16)
2 bytes: cycle number (uint16)
4 bytes: error rate (float)
4 bytes: number of perfect reads (uint32)
4 bytes: number of reads with 1 error (uint32)
4 bytes: number of reads with 2 errors (uint32)
4 bytes: number of reads with 3 errors (uint32)
4 bytes: number of reads with 4 errors (uint32)

Where N is the record index
Tile Metrics (TileMetricsOut.bin)
Contains aggregate or read metrics by tile
Format:

byte 0: file version number (2)
byte 1: length of each record
bytes (N * 10 + 2) - (N *10 + 11): record:
2 bytes: lane number (uint16)
2 bytes: tile number (uint16)
2 bytes: metric code (uint16)
4 bytes: metric value (float)

Where N is the record index and possible metric codes are:
code 100: cluster density (k/mm2)
code 101: cluster density passing filters (k/mm2)
code 102: number of clusters
code 103: number of clusters passing filters
code (200 + (N – 1) * 2): phasing for read N
code (201 + (N – 1) * 2): prephasing for read N
code (300 + N – 1): percent aligned for read N
code 400: control lane

Corrected Intensity Metrics (CorrectedIntMetricsOut.bin)
Contains base call metrics
Format:

byte 0: file version number (2)
byte 1: length of each record
bytes (N * 48 + 2) - (N *48 + 49): record:

2 bytes: lane number (uint16)

RTA TheoryofOperations

2 bytes: tile number (uint16)
2 bytes: cycle number (uint16)
2 bytes: average intensity (uint16)
2 bytes: average corrected int for channel A (uint16)
2 bytes: average corrected int for channel C (uint16)
2 bytes: average corrected int for channel G (uint16)
2 bytes: average corrected int for channel T (uint16)
2 bytes: average corrected int for called clusters for base A (uint16)
2 bytes: average corrected int for called clusters for base C (uint16)
2 bytes: average corrected int for called clusters for base G (uint16)
2 bytes: average corrected int for called clusters for base T (uint16)
20 bytes: number of base calls (float) for No Call and channel [A, C, G, T]
respectively
4 bytes: signal to noise ratio (float)

Control Metrics (ControlMetricsOut.bin)
Contains pull out information for Illumina in-line sample controls
Format:

 byte 0: file version number (1)
 bytes (variable length): record:

2 bytes: lane number (uint16)
2 bytes: tile number (uint16)
2 bytes: read number (uint16)
2 bytes: number bytes X for control name(uint16)
X bytes: control name string (string in UTF8Encoding)
2 bytes: number bytes Y for index name(uint16)
Y bytes: index name string (string in UTF8Encoding)
4 bytes: # clusters identified as control (uint32)

Image Metrics (ImageMetricsOut.bin)
Contains min max contrast values for image
Format:

byte 0: file version number (1)
byte 1: length of each record
bytes (N * 12 + 2) - (N *12 + 13): record:

2 bytes: lane number (uint16)
2 bytes: tile number (uint16)
2 bytes: cycle number (uint16)
2 bytes: channel id (uint16) where 0=A, 1=C, 2=G, 3=T
2 bytes: min contrast value for image (uint16)
2 bytes: max contrast value for image (uint16)

Index Metrics (IndexMetrics.bin and IndexMetricOut.bin)
Reports the indexes count. Format:
Byte 0: file version (1)
Bytes(variable length): record:

2 bytes: lane number(unint16)
2 bytes: tile number(unint16)
2 bytes: read number(unint16)
2 bytes: number of bytes Y for index name(unint16)

31 Pub. No. 770-2009-020, current asof 09 Nov2011

Y bytes: index name string (string in UTF8Encoding)
4 bytes: # clusters identified as index (uint32)
2 bytes: number of bytes V for sample name(unint16)
V bytes: sample name string (string in UTF8Encoding)
2 bytes: number of bytes W for sample project(unint16)
W bytes: sample project string (string in UTF8Encoding)

Offset files
The offset file can be found in the Data directory: <run
directory>\Data\Intensities\offsets.txt. It gives the coefficients of the affine
transformation for each image back to the frame of reference. The columns are:

Lane number
Cycle number
Tile number
Channel number (0,1,2,3 for A,C,G,T)
Zero
shift X (or -99999 for failed registration)
shift Y (or -99999 for failed registration)
scale X
scale Y
shear X
shear Y

SubTileOffsets.txt file
The file Data\Intensities\Offsets\SubTileOffsets.txt gives the measured shift for each
quadrant of each image relative to the frame of reference. Normally these two shifts
are similar (within 5 pixels) across all four quadrants. If one quadrant doesn't match
(due to localized imaging issues), it is discarded. If the offsets from the quadrants do
not match, the image fails registration (and has a shifts of -99999 reported in the
corresponding entry in the offsets.txt file) The columns are:

Lane number
Cycle number
Tile number
Channel number (0,1,2,3 for A,C,G,T)
Flag (normally 0)
Shift X (top left)
Shift Y (top left)
Score (top left)
Shift X (bottom left)
Shift Y (bottom left)
Score (bottom left)
Shift X (top right)
Shift Y (top right)
Score (top right)
Shift X (bottom right)
Shift Y (bottom right)
Score (bottom right)

RTA TheoryofOperations

Directories
} <run directory>\Data
• ImageAnalysis_netcopy_complete-<read>.txt
• Basecalling_netcopy_complete-<read>.txt
• SubTileOffsets.txt

} <run directory>\Data\RTALogs
• Log.txt – this is a summary of all important events that happened during the
run

• CopyLog.txt – these are all the files generated by RTA that are copied to the
output folder and/or deleted from the run folder

• Errorlog.txt – This is a list of error that may indicate a potential problem. This
file may not exist if the run completed without error. This file should be
checked at the end of each run or when abnormal behavior is exhibited by
the run.

} <run directory>\Data\TileStatus
• This holds the current state of each tile. Each file has the form
TileStatusL<lane>T<tile>.bin

} <run directory>\Data\reports
• These are all the files needed to support the run-time status page

} <run directory>\Data\Intensities
• Config.xml
• RTAConfiguration.xml – the complete configuration of RTA for this run
• *SampleSheet.* - The sample sheet for the run if found
• S_*_pos.txt files

} <run directory>\Data\Intensities\BaseCalls
• Config.xml

} <run directory>\Data\Intensities\BaseCalls\Matrix
• S_<read>_matrix.txt – aggregated color matrix for flowcell
• S_<lane>_<read>_<tile>_matrix.txt – color matrix for tile
• S_<lane>_<read>_matrix.txt – aggregated color matrix for lane

} <run directory>\Data\Intensities\BaseCalls\Phasing
• S_<read>_matrix.txt – aggregated color matrix for flowcell
• S_<lane>_<read>_<tile>_matrix.txt – color matrix for tile
• S_<lane>_<read>_matrix.txt – aggregated color matrix for lane

} <run directory>\Data\Intensities\Offsets
• Offsets.txt – contain tile offsets for each cycle and channel relative to the
template

RTA TheoryofOperations

Technical Assistance

For technical assistance, contact Illumina Customer Support.

Illumina Website http://www.illumina.com

Email techsupport@illumina.com

Table 1 Illumina General Contact Information

Region Contact Number Region Contact Number
North America 1.800.809.4566 Italy 800.874909

Austria 0800.296575 Netherlands 0800.0223859

Belgium 0800.81102 Norway 800.16836

Denmark 80882346 Spain 900.812168

Finland 0800.918363 Sweden 020790181

France 0800.911850 Switzerland 0800.563118

Germany 0800.180.8994 United Kingdom 0800.917.0041

Ireland 1.800.812949 Other countries +44.1799.534000

Table 2 Illumina Customer Support Telephone Numbers

MSDSs
Material safety data sheets (MSDSs) are available on the Illumina website at
http://www.illumina.com/msds.

Product Documentation
If you require additional product documentation, you can obtain PDFs from the
Illumina website. Go to http://www.illumina.com/support/documentation.ilmn. When
you click on a link, you will be asked to log in to iCom. After you log in, you can
view or save the PDF. To register for an iCom account, please visit
https://icom.illumina.com/Account/Register.

http://www.illumina.com/
http://www.illumina.com/msds

Illumina, Inc.
9885TowneCentreDrive
SanDiego,CA92121-1975
+1.800.809.ILMN (4566)
+1.858.202.4566 (outsideNorth America) techsupport@illumina.com
www.illumina.com

	Introduction
	How RTA Works
	Input
	Analysis Steps
	Output
	Appendix
	Technical Assistance

