
T

ATGCATGCATGCATGCAT
CAT

GCATGCATGCA

G

T
AG

C
C

Genome Analyzer Pipeline Software v1.0 User Guide iii

Notice

This publication and its contents are proprietary to Illumina, Inc., and are intended
solely for the contractual use of its customers and for no other purpose than to
operate the system described herein. This publication and its contents shall not be
used or distributed for any other purpose and/or otherwise communicated, disclosed,
or reproduced in any way whatsoever without the prior written consent of Illumina,
Inc.

For the proper operation of this system and/or all parts thereof, the instructions in this
guide must be strictly and explicitly followed by experienced personnel. All of the
contents of this guide must be fully read and understood prior to operating the
system or any of the parts thereof.

FAILURE TO COMPLETELY READ AND FULLY UNDERSTAND AND FOLLOW ALL OF
THE CONTENTS OF THIS GUIDE PRIOR TO OPERATING THIS SYSTEM, OR PARTS
THEREOF, MAY RESULT IN DAMAGE TO THE EQUIPMENT, OR PARTS THEREOF,
AND INJURY TO ANY PERSONS OPERATING THE SAME.

Illumina, Inc. does not assume any liability arising out of the application or use of any
products, component parts, or software described herein. Illumina, Inc. further does
not convey any license under its patent, trademark, copyright, or common-law rights
nor the similar rights of others. Illumina, Inc. further reserves the right to make any
changes in any processes, products, or parts thereof, described herein without notice.
While every effort has been made to make this guide as complete and accurate as
possible as of the publication date, no warranty or fitness is implied, nor does Illumina
accept any liability for damages resulting from the information contained in this
guide.

© 2008 Illumina, Inc. All rights reserved. Illumina, Solexa, Making Sense Out of Life,
Oligator, Sentrix, GoldenGate, DASL, BeadArray, Array of Arrays, Infinium,
BeadXpress, VeraCode, IntelliHyb, iSelect, CSPro, iScan, and GenomeStudio are
registered trademarks or trademarks of Illumina. All other brands and names
contained herein are the property of their respective owners.

Genome Analyzer Pipeline Software v1.0 User Guide v

Revision History

Part Number Revision Letter Date

1004759 A June 2008

1003881 A January 2008

Genome Analyzer Pipeline Software v1.0 User Guide vii

Table of Contents

Notice. iii

Revision History . v

Table of Contents . vii

List of Figures. xi

List of Tables . xiii

Chapter 1 Overview . 1

Introduction . 2
Additional Information. 2

Genome Analyzer Pipeline Software Workflow . 3
Installation . 3
Running the Analysis . 3
Analysis Output . 3

Reporting Problems . 4
Technical Assistance . 4

Chapter 2 Core Concepts . 5

Introduction . 6
Analysis Modules . 6
Understanding the Run Folder. 8

Run Folder Structure . 9
Images Folder . 10
Data Folder . 10
Run Folder Naming . 11
File Naming . 12
Parameters. 12
Paired Reads . 12

Calibration and Input Parameters . 13
Image Offsets . 13
Frequency Cross-Talk Matrix . 14
Phasing/Prephasing Estimates. 15
Sample Information . 15

Alignment Algorithms . 16

viii Table of Contents

Part # 1004759 Rev. A

Chapter 3 Running the Analysis . 17

Introduction . 18
Starting the Genome Analyzer Pipeline Software . 18
Running a Standard Analysis . 19

Specifying the IPAR Folder . 19
Parallelization Switch . 20
Nohup Command . 20

Command Line Options. 21
General Options . 21
GOAT Options. 22
GOAT and Bustard Options . 22
Paired Reads . 23
IPAR Analysis . 23
Makefile Targets . 24

Chapter 4 Using GERALD . 27

Introduction . 28
GERALD Parameters . 29

ANALYSIS Variables. 29
Analysis Parameters . 30
Filtering Parameters. 31
USE_BASES Option . 31
Lane-by-Lane Parameters . 32
FORCE Option. 33
Rerunning the Analysis . 33
Contaminant Filtering . 33
Building an SRF Archive. 33

GERALD Configuration File . 35
Lane-Specific Options . 36
Optional Parameters . 36
Paired-End Analysis Options . 37

Preparing the Reference Genome . 38
ELAND Alignments . 40

Missing Bases in ELAND . 41
Using ANALYSIS eland_tag . 41
Using ANALYSIS eland_extended . 42
Using ANALYSIS eland_pair . 43

Chapter 5 Analysis Output . 47

Introduction . 48
Visual Analysis Summary . 48

Results Summary . 48
Cluster Intensity . 56
Error Rates . 57

Text-Based Analysis Results . 58
Interpretation of Run Quality . 60

Summary.htm. 60
IVC.htm . 64
All.htm and Error.htm . 64

Table of Contents ix

Genome Analyzer Pipeline Software v1.0 User Guide

Chapter 6 Advanced Pipeline Usage . 65

Introduction . 66
Running Bustard as a Standalone Program . 66

Assigning a Control Lane. 66
Running GERALD as a Standalone Program . 67

Additional “Make” Options. 67
Running ELAND as a Standalone Program . 68

Compiling ELAND . 69
Command Line Syntax. 69

Appendix A System Requirements and Software Installation 71

Introduction . 72
System Requirements. 72

Network Infrastructure . 72
Analysis Computer. 73

Installation Prerequisites . 75
Setting Up Email Reporting . 75

Installing the Pipeline Software . 77
Compiling on Other Platforms. 77
Directory Setup . 77

Appendix B Output File Descriptions . 79

Introduction . 80
Output File Types . 80

Intensity Files . 81
Sequence Files. 81
Quality Score Files . 82
Efficiency . 82

Intermediate Output Data Files . 83
Output File Formats . 86
Parameters File Format . 89

Appendix C Using Parallelization. 93

Introduction . 94
“Make” Utilities . 94

Standard “Make”. 94
Distributed “Make” . 94
Customizing Parallelization . 94
Parallelization Limitations . 97
Memory Limitations . 98

Appendix D Base Call Calibration and Alignment Scoring. 99

Introduction . 100
Goal . 100
Method . 100
Modifications to the Phred Formula . 100

Characteristics of the Quality Scores Produced by the Base Caller. 101
High Quality Scores . 101

x Table of Contents

Part # 1004759 Rev. A

Limitations of the Recalibration Method . 101
Major Alignment Errors . 101
SNP Rate . 101
Size of Data Set . 101

General Usage . 102
Configuring Quality Table Sources in GERALD. 102

Expert Usage . 104
Extracting Quality Predictors . 104
Extracting Reference Bases . 106
Creating a Quality Table . 107
Generating New Quality Values . 109
Configuring Quality Table Sources in GERALD. 111
Default and Experimental Predictors. 112
Further Considerations . 113

Frequently Asked Questions . 114

Genome Analyzer Pipeline Software v1.0 User Guide xi

List of Figures

Figure 1 Three Steps of Data Analysis . 2
Figure 2 Pipeline Modules . 6
Figure 3 Run Folder Directory Structure . 8
Figure 4 Frequency Cross-Talk Matrix and Phasing File Locations 14
Figure 5 Run Folder Structure and Output File Types . 80
Figure 6 Q vs. Qphred . 114
Figure 7 Actual vs. Computed Error Rate for Three Sets of Simulated Reads. 116

xii List of Figures

Part # 1004759 Rev. A

Genome Analyzer Pipeline Software v1.0 User Guide xiii

List of Tables

Table 1 Illumina Technical Support Contacts . 4
Table 2 File Naming Components . 12
Table 3 ANALYSIS Variables . 29
Table 4 Analysis Parameters . 30
Table 5 USE_BASES Options . 32
Table 6 Lane-by-Lane Parameters. 32
Table 7 GERALD Configuration File Parameters . 35
Table 8 GERALD Configuration File Lane-Specific Options 36
Table 9 GERALD Configuration File Optional Parameters . 36

Table 10 GERALD Configuration File Paired-End Analysis Options 37
Table 11 Parameters for ANALYSIS eland_extended . 43
Table 12 Parameters for ANALYSIS eland_pair . 44
Table 13 Example of Individual Alignments Table . 52
Table 14 Example of Unique Paired Alignments Table . 53
Table 15 Example of Unique Paired Alignment Effects Table 54
Table 16 Example of Non-unique Paired Alignments Table. 54
Table 17 Example of Mispairing Rate Table . 54
Table 18 Example of Relative Orientation Statistics Table . 55
Table 19 Example of Insert Size Statistics Table . 55
Table 20 Example of Insert Statistics Table . 56
Table 21 Text-Based Analysis Results . 58
Table 22 Example of Lane Results Summary . 60
Table 23 Example of Expanded Lane Summary . 60
Table 24 Options for ELAND_standalone.pl. 68
Table 25 Data Volumes Per Experiment . 72
Table 26 Intermediate Output File Descriptions . 83
Table 27 Contaminant Filtering-Specific Files . 85
Table 28 Final Output File Formats . 86
Table 29 Intermediate Output File Formats . 87
Table 30 QCAL_SOURCE Variable Values . 102
Table 31 Default Base-Call Quality Predictors . 112
Table 32 Experimental Base-Call Quality Predictors. 113

xiv List of Tables

Part # 1004759 Rev. A

Genome Analyzer Pipeline Software v1.0 User Guide 1

Chapter 1

Overview

Topics
2 Introduction

3 Genome Analyzer Pipeline Software Workflow

3 Installation

3 Running the Analysis

3 Analysis Output

4 Reporting Problems

4 Technical Assistance

2 CHAPTER 1
Overview

Part # 1004759 Rev. A

Introduction

The Genome Analyzer Pipeline Software (Pipeline) is a set of utilities
designed to perform a complete offline data analysis of a sequencing run. It
is supplied as source code and scripts.

Data analysis consists of three steps: image analysis, base calling, and
sequence analysis.

1. Image analysis—Uses the raw TIF files to locate clusters on the image,
and outputs the cluster intensity, X,Y positions, and an estimate of the
noise for each cluster. The output from image analysis provides the input
for base calling.

2. Base calling—Uses cluster intensities and noise estimate to output the
sequence of bases read from each cluster, along with a confidence level
for each base.

3. Sequence analysis—Allows for alignment to a reference sequence,
filtering of data based on predefined criteria, and visualization of the
result.

Figure 1 Three Steps of Data Analysis

The output data produced by the Genome Analyzer Pipeline Software are
stored in flat text, tab-delimited files in a hierarchical folder structure called
the Run Folder. The Run Folder includes all data folders generated from the
Genome Analyzer and the data analysis structure. For a detailed description
of the Run Folder structure, see Understanding the Run Folder on page 8.

The Pipeline requires a Linux system with specific processing and data
storage capacity. For specific requirements, see System Requirements on
page 72.

Additional
Information

Additional information on the Genome Analyzer Pipeline Software can be
found in the Pipeline/docs folder of your Pipeline software distribution.

Analysis Computing SystemGenome Analyzer
Images (tif)

Data
Transfer

Analysis Results
(txt, html)

Image Analysis

Genome Analyzer Pipeline Software

Base Calling Sequence
Analysis

Cluster Positions
Cluster Intensities

Cluster Noise

Cluster Sequence
Cluster Probabilities
Corrected Intensities

Alignment
Filtering

Data Visualization

226 623 TATTACAGGCAT
139 583 TGTGGGTATGTG
220 618 TCGCAAACTCTA
360 507 TTATTTGTGAGC
334 512 TAGTGGTGCACT
155 517 TCCACAATCGTT
343 541 TAGGTTCATGAC
241 608 TATTACGCCAGG

226 623 TATTACAGGCAT
139 583 TGTGGGTATGTG
220 618 TCGCAAACTCTA
360 507 TTATTTGTGAGC
334 512 TAGTGGTGCACT
155 517 TCCACAATCGTT
176 520 TAGGTTCATGAC
371 592 TATTACGCCAGG

226 623 TATTACAGGCAT
139 583 TGTGGGTATGTG
220 618 TCGCAAACTCTA
360 507 TTATTTGTGAGC
334 512 TAGTGGTGCACT
155 517 TCCACAATCGTT
271 508 TAGGTTCATGAC
195 503 TATTACGCCAGG

tile_cycle_image_a.tif
t ile_cycle_image_c.t if

t ile_cycle_image_g.tif
t ile_cycle_image_t.tif

Genome Analyzer Pipeline Software Workflow 3

Genome Analyzer Pipeline Software v1.0 User Guide

Genome Analyzer Pipeline Software Workflow

The image data from a sequencing run are saved on the Genome Analyzer
computer in a folder structure organized by cycle, lane, and tile number. The
data are transferred to a network location for analysis after the sequencing
run is complete or by mirroring the data to the storage location while the run
progresses.

The following is an overview of the Pipeline workflow.

Installation 1. Install the Pipeline prerequisites on a suitable Linux system. See
Installation Prerequisites on page 75.

2. Install the Pipeline software and compile the Pipeline using the “make”
command. See Installing the Pipeline Software on page 77.

3. Set up the “Instruments” directory for parameters files. See Directory
Setup on page 77.

Running the
Analysis

1. Change to the Run Folder location.

2. Create a configuration file that specifies what analysis should be done for
each lane. See GERALD Parameters on page 29 and GERALD
Configuration File on page 35.

3. Run a check on the Run Folder. See Running a Standard Analysis on
page 19.

4. Add command line options, generate the analysis folder, and
corresponding makefiles. See Command Line Options on page 21.

5. Change to the analysis directory and start your analysis.

Analysis Output 1. View the analysis results of your run. See Visual Analysis Summary on
page 48 and Text-Based Analysis Results on page 58.

2. Interpret the run quality. See Interpretation of Run Quality on page 60.

4 CHAPTER 1
Overview

Part # 1004759 Rev. A

Reporting Problems

Contact Illumina Technical Support to report any issues with the Pipeline.

When reporting an issue, it helps to capture all the output and error
messages produced by a run. This is done by redirecting the output using
“nohup” or the facilities of a cluster management system. For an explanation
of “nohup,” see Running a Standard Analysis on page 19.

It helps to attach the makefile corresponding to the part of the Pipeline that
is causing the problem. If there are GERALD-related issues, it helps to post
the config.txt file found in the GERALD output folder. For problems relating
to specific tiles or files, it is useful to send the output of “wc -l” and “ls -l” on
these files.

Technical Assistance

For technical assistance, contact Illumina Technical Support.

Table 1 Illumina Technical Support Contacts

Contact Number

Toll-free Customer Hotline (North America) 1-800-809-ILMN (1-800-809-4566)

International Customer Hotline 1-858-202-ILMN (1-858-202-4566)

Illumina Website www.illumina.com

Email techsupport@illumina.com

Genome Analyzer Pipeline Software v1.0 User Guide 5

Chapter 2

Core Concepts

Topics
6 Introduction

6 Analysis Modules

8 Understanding the Run Folder

9 Run Folder Structure

11 Run Folder Naming

12 File Naming

12 Parameters

12 Paired Reads

13 Calibration and Input Parameters

13 Image Offsets

14 Frequency Cross-Talk Matrix

15 Phasing/Prephasing Estimates

15 Sample Information

16 Alignment Algorithms

6 CHAPTER 2
Core Concepts

Part # 1004759 Rev. A

Introduction

Analysis modules perform the specific tasks of image analysis, base calling,
and sequence alignment. During an analysis run, a defined folder structure is
generated that captures the output of an instrument run in text files and
parameters files. Parameters files contain calibration and input settings that
optimize your analysis run and the alignment programs perform sequence
analysis. This section describes these core concepts of the Genome Analyzer
Pipeline Software.

Analysis Modules

The Pipeline is divided into modules that are managed by the “make” utility.
The “make” utility is commonly used to build executables from source code
and is designed to model dependency trees by specifying dependency rules
for files. These dependencies are stored in a file called a makefile. “Make”
has a dual purpose within the Pipeline software:

To build executables from source code
To perform data analysis steps using the software

Each Pipeline module is a collection of Perl or Python scripts and C++
executables, and has its own makefile associated with the analysis task. The
script goat_pipeline.py, named after the General Oligo Analysis Tool (GOAT)
calls the subscripts for three Pipeline modules: Firecrest, Bustard
(bustard.py), and GERALD (GERALD.pl).

Any of the first two scripts can invoke the next script automatically, so there is
no need to call more than one script for any given analysis run. Typically, the
analysis begins with the image analysis script, goat_pipeline.py. However, if
you need to reanalyze data, you can start with one of the other scripts and
use different parameters.

Figure 2 Pipeline Modules

Bustard
performs

Base Calling

Sequence Analysis,
Visualization,
Filtering, and

Alignment using
ELAND or PhageAlign

Firecrest
performs

Image Analysis

Makefile

GOAT

Makefile Makefile

goat_pipeline.py

busta rd.py GERALD.pl

Analysis Modules 7

Genome Analyzer Pipeline Software v1.0 User Guide

Firecrest is the module used for image analysis. Firecrest identifies
cluster positions and extracts intensities. Through image filtering, it
sharpens and enhances clusters, removes background noise, and detects
clusters based on morphological features on the image. Firecrest also
adjusts the scale and registration of an image.
Bustard is the module used for base calling. Bustard deconvolves the
signal from the clusters and applies correction for cross-talk, phasing, and
prephasing.
• Frequency cross-talk—The Genome Analyzer uses two lasers and four

filters to detect four dyes attached to the four types of nucleotide,
respectively. The frequency emission of these four dyes overlaps so
that the four images are not independent. The frequency cross-talk is
deconvolved using a frequency cross-talk matrix.

• Phasing/Prephasing—Depending on the efficiency of the fluidics and
the sequencing reactions, a small number of molecules in each
cluster may run ahead (prephasing) or fall behind (phasing) of the
current incorporation cycle. This effect is mitigated by applying
corrections during the base calling step.

Generation of Recursive Analyses Linked by Dependency (GERALD) is
the module used for sequence alignment, data visualization, filtering, and
alignment. The following two alignment programs work within the
GERALD module:
• Efficient Large-Scale Alignment of Nucleotide Databases (ELAND)

is very fast and aligns for up to two errors from a reference for the first
32 bases. This algorithm is used for any reference larger than
100 Kbases.

• PhageAlign does an exhaustive alignment (all possible alignments
up to arbitrary edit distances), but is slow.

A run of the Pipeline is a two-stage process:

1. Generate the folders and makefiles using one of the above scripts.

2. Start the Pipeline analysis by executing “make.” See Running a Standard
Analysis on page 19 for details.

In addition, the rest of this section describes the analysis and input
parameters, and the command line options used in an analysis run.

8 CHAPTER 2
Core Concepts

Part # 1004759 Rev. A

Understanding the Run Folder

The Pipeline operates in a specific directory called the Run Folder where the
images and analysis output files are saved by default in a hierarchical
structure.

The following figure illustrates a typical Run Folder.

Figure 3 Run Folder Directory Structure

<ExperimentName>
YYMMDD_machinename_XXXX

ExperimentName
.params file

Data

Firecrest
Image Analysis

Bustard
Base Calling

.params
file

_int.txt
files

_seq.txt
files

GERALD

alignment
files

_sig2.txt
files

_prb.txt
files

Images

L001
(By Lane)

.tif
files

C1.1
(By Cycle)

.tif
files

C1.2
(By Cycle)

visualization
files

filtering
results

Understanding the Run Folder 9

Genome Analyzer Pipeline Software v1.0 User Guide

The standardized structure, file naming conventions, and file formats of the
Run Folder allow for the following:

A single point of data storage, logging, and analysis output during and
after a run.
Encoding sufficient information to trace the history of the data in the Run
Folder back to the laboratory notebook without confusion between
instruments, experiments, or sites.
Standardized input and output enabling component software to operate
without error, regardless of the instrument generating the data.
Capturing and encoding enough information to independently reanalyze
the data at any time, in such a way that existing extractions of sequence
and related data are preserved, and parameters used during any point of
the extraction process are captured and related to the subsequent
output data.
Subsequent analyses to be stored in the Run Folder.
The software tools and other user software to implement and enforce
these structures and standards.

Run Folder
Structure

The Run Folder contains the Images folder and Data folder as illustrated in
Figure 3. The Data folder contains Image Analysis folders and the Image
Analysis folders contain Sequence folders.

The Images folder holds the images from every tile for a given cycle of
sequencing.
The Data folder is created the first time analysis is initiated for a given
experiment. Any analysis performed on the data is saved within the Data
folder.

Each run of the main analysis modules creates a subdirectory in the Data
folder of the Run Folder as follows:

Each run of the image analysis software (Firecrest) creates a new image
analysis output folder in the Data folder.
Each run of the base calling software (Bustard) creates a new
subdirectory in the image analysis subdirectory on which the base calls
are based, resulting in a tree-like structure of analyses.
Parameters and versions for any given analysis run are logged in the
folder structure to make it possible to reconstruct any previous analysis
run.

You can do multiple analyses of the data using different analysis parameters
and the results will not be overwritten. The default naming convention
consists of the number of cycles run, the version of the software used for the
operation (Firecrest, Bustard), the date the analysis initiated, and the login of
the user. If the user initiates a second analysis on the same day, a new folder
structure is created and the results from the previous analysis are not
overwritten.

10 CHAPTER 2
Core Concepts

Part # 1004759 Rev. A

Images Folder The Images folder contains a subfolder for each lane that has been
sequenced. The folders are named using the following convention where the
lane number is padded to three digits:

<Sample-ID>_L<lane number>

If no sample-ID is known, only the lane number is used. For example, L001
contains the images taken in the first lane.

Each lane folder contains a subfolder for each cycle of sequencing. Each
image-cycle subfolder contains four images for every tile, one for each of the
four bases.

The Image folder naming follows the naming convention C<cycle
number>.<version number>. Cycle number is indexed and represents the
nth cycle. Version number allows for a cycle to be re-attained if the image
acquisition were performed more than once, or the machine paused and a
cycle repeated. For example, folders C1.1 and C1.2 would appear if images
were acquired twice on the first cycle.

Within each image-cycle subfolder are four tif files for each tile. These files
are named using the following convention:

<sample>_<lane>_<tile>_<base>.tif

In the example, s_1_67_g.tif, the “s” is the default sample-ID. Sample-IDs
must not contain any underscores. Underscores are used as separators
between the different identifiers of the filename to allow easy splitting by any
software reading these filenames.

Data Folder The Data folder contains a hierarchical structure that consists of the image
analysis output folder, then the base calling output folder, and then the
sequence alignment output folder.

A new subfolder is generated each time a set of images is processed by the
image analysis module (Firecrest). These data are kept in one file per tile for
raw intensities and use the extension _int.txt, and one file per tile for cluster
noise and use the extension _nse.txt.

The Data folder contains a parameters file with multiple records
corresponding to each subfolder which has been generated as a result of
analyzing sets of images. The detailed information about the image analysis
is stored one level above the corresponding data in the directory hierarchy.
This allows a user to browse the different results of the image analysis without
having to descend into the subfolders.

The parameters file explicitly records which cycle-image folders were used to
generate the raw intensities and noise files, and any parameters used. It also
records the name of the subfolder and the individual files within it. For a
detailed description of the parameters file, see Parameters on page 12.

Understanding the Run Folder 11

Genome Analyzer Pipeline Software v1.0 User Guide

Image Analysis Folders

Each image analysis subfolder is named using the following convention:
C<first cycle>-<last-cycle>_<software><software-
version>_<date>_<user>

For example, C1-27_Firecrest1.8.20_31-07-2006_myuser.2 contains the
second version of an analysis of cycles 1–27 performed using version 1.8.20
of the Firecrest software, run by the user “myuser” on the 31st of July 2006.

Base Calling Folders

Each image analysis folder may hold multiple sequence folders with the
output of different runs of a base caller package. Each subfolder is named
using the following convention:

<software><software-version>_<date>_<user>[.<version-number>]

For example, the folder name Bustard1.8.8_08-11-2005_myuser.3 represents
the third run of the Bustard base caller on 8th of November 2005 by the user
“myuser.”

Each image analysis folder also holds a parameters file that records any
relevant information about the run of the base caller module.

Run Folder Naming It is desirable to keep Experiment-Ids (or Sample-ID) and instrument names
unique within any given enterprise. You should establish a convention under
which each machine is able to allocate Run Folder names independently of
other machines to avoid naming conflicts.

The top level Run Folder name is generated using three fields to identify the
<ExperimentName>, separated by underscores. For example,
YYMMDD_machinename_NNNN.

1. The first field is a six-digit number specifying the date of the run. The
YYMMDD ordering ensures that a numerical sort of Run Folders places
the names in chronological order.

2. The second field specifies the name of the sequencing machine. It may
consist of any combination of upper or lower case letters, digits, or
hyphens, but may not contain any other characters (especially not an
underscore). It is assumed that the sequencing instrument is synonymous
with the PC controlling it, and that the names assigned to the
instruments are unique across the sequencing facility.

3. The third field is a four-digit counter specifying the experiment ID on that
instrument. Each instrument should be capable of supplying a series of
consecutively numbered experiment IDs (incremental unique index) from
the onboard sample tracking database or a LIMS.

A Run Folder named 070108_instrument1_0147 indicates experiment
number 147, run on instrument 1, on the 8th of Jan 2007. While the date and
instrument name specify a unique Run Folder for any number of instruments,
the addition of an experiment ID ensures both uniqueness and the ability to
relate the contents of the Run Folder back to a laboratory notebook or LIMS.

Additional information is captured in the Run Folder name in fields separated
by an underscore from the first three fields. For example, you may want to
capture the flow cell number in the Run Folder name as follows:
YYMMDD_machinename_XXXX_FCYYY.

12 CHAPTER 2
Core Concepts

Part # 1004759 Rev. A

File Naming The Pipeline uses the following format for file naming:

<sample>_<lane>_[<tile>_][<cycle>_][<id>_]<type>.<filesuffix>

Example: s_1_0010_01_2_clu.txt is a valid filename.

Exceptions:
For image (.tif) files, the <tile> location can have less than four digits.
For image (.tif) files, the <tile> location may be replaced by two
components identifying a row and column in the lane.

Parameters The top level Run Folder, the Data Folder and subfolders, and the top level
Image folder can all contain a parameters file. This read-only file is intended
to contain any parameter data specific to the given level of information held
in the folder.

For an example of the parameters file, see Parameters File Format on
page 89.

Paired Reads The simplest way to use paired-read data assumes that you have a single Run
Folder containing the images for both reads, with a continuously
incremented cycle count.

For Genome Analyzer software SCS 1.0 and Pipeline version 0.3 and
later, the Pipeline automatically knows where the second read starts.
For older versions of Genome Analyzer instrument and analysis software,
use the option --new-read-cycle to identify the start of the second read.
For a description of the --new-read-cycle option, see Command Line
Options on page 21.

An alternative way assumes that both reads of a pair are stored in two
separate Run Folders. Specify both folders as arguments to goat_pipeline.py.
This generates output only in the first Run Folder and the second folder is not
touched.

Table 2 File Naming Components

Component Description

<sample> Alphanumeric string

<lane> Single-digit number identifying a flow cell lane

<tile> Four-digit number identifying a tile location in a flow
cell lane

<cycle> Two-digit number identifying a sequencing cycle

<id> Single-digit number to distinguish files; for example,
the different reads of a paired-end read

<type> Alphabetical string identifying the type of content
stored in the file

<filesuffix> Suffix to identify the traditional file type

Calibration and Input Parameters 13

Genome Analyzer Pipeline Software v1.0 User Guide

Calibration and Input Parameters

For an optimal analysis run, the Pipeline needs a number of calibration and
input parameters. By default, the Pipeline auto-generates these parameters
for each analysis.

Default offsets for runs on the same Genome Analyzer usually do not need to
be changed. The Pipeline calculates these parameters automatically and uses
them for the corresponding analysis steps.

For samples with biased-base compositions, as encountered in many tag-
based or micro RNA applications, auto-calibration does not provide perfect
results. For such samples, you need to dedicate one lane of the flow cell to a
control sample and use the --control-lane command option to generate
analysis parameters. For a detailed description, see Command Line Options
on page 21.

Image Offsets There are small pixel offsets among the four differently colored images taken
of each tile. These are due to slightly different optical paths for each image.
The Pipeline uses offsets to correct for this, and also corrects for linear
rescaling of the image.

Each analysis run creates a file called Data/default_offsets.txt in the current
Run Folder. The Data/default_offsets.txt file is used for subsequent analysis
of the same run. If the file is located in Instrument/<instrument>/
default_offsets.txt, the values in the file will be updated during the first run
only. File locations are set using the INSTRUMENT_DIR variable, as described
in Directory Setup on page 77.

The default_offsets.txt file contains four lines, corresponding to A, C, G, and
T respectively, with four values each, using the A image as a reference. The
following is an example of a typical default_offsets.txt file:

The first two columns in a row correspond to the values of the X and Y offsets
of the four images (in pixels).

The next two columns indicate scale factors applied to the image.
A scale factor of 0 indicates that the image does not need to be rescaled.
A scale factor of 0.001 for a 1000 x1000 pixel image indicates that
images taken in the corresponding frequency channel tend to be one
pixel larger than the reference channel.

 0.00
-1.05
-1.20
 0.29

 0.00
-1.62
-0.47
-0.92

 0.00000
-0.00017
-0.00143
-0.00159

 0.00000
 0.00007
-0.00142
-0.00142

Default offsets

14 CHAPTER 2
Core Concepts

Part # 1004759 Rev. A

Frequency Cross-
Talk Matrix

The Genome Analyzer uses two different lasers to excite the dye attached to
each nucleotide. The frequency emission of these four dyes overlaps, so the
four images are not independent. As in Sanger sequencing, the frequency
cross-talk has to be deconvolved using a frequency cross-talk matrix.

The frequency cross-talk is estimated during the analysis run and captured in
a file called s_matrix.txt. The s_matrix.txt file is located in the Matrix folder as
shown in Figure 4.

Figure 4 Frequency Cross-Talk Matrix and Phasing File Locations

The following is an example of a typical s_matrix.txt file:

Data

Firecrest
Image Analysis

Bustard
Base Calling

s_matrix.txt

phasing.xml

Phasing

Matrix

phasing.txt

s_N_phasing.xml

s_N_phasing.txt

> C
> A
> T
> G
1.18
0.18
0.00
0.00

1.29 0.00 0.00
1.03 0.00 0.00
0.00 1.43 0.80
0.00 0.00 0.71

frequency response matrix definition

Calibration and Input Parameters 15

Genome Analyzer Pipeline Software v1.0 User Guide

The lines starting with a greater than symbol (“>”) specify the order of the
rows and columns in terms of the bases they represent.

The matrix elements show how the A, C, G, and T dyes/nucleotides (columns)
cross-talk into the A, C, G, and T channels. A normal matrix should be
diagonally dominant (diagonal elements tend to be the largest values) with
the exception of the top-left and bottom-right corners (A/C and G/T cross-
talk respectively). These are not as well-separated due to the fact that both
corresponding dyes are excited by the same laser.

Phasing/Prephasing
Estimates

Depending on the efficiency of the fluidics and the sequencing reactions, a
small number of molecules in each cluster may run ahead (prephasing) or fall
behind (phasing) the current incorporation cycle. This effect can be mitigated
by applying corrections during the base calling step.

The phasing estimates are produced before a run of the base caller module
and captured in a file called phasing.xml. The phasing.xml file is located in
the Phasing folder as shown in Figure 4.

As the estimation uses statistical averaging over many clusters and
sequences to estimate the correlation of signal between different cycles, the
phasing estimates tend to be more accurate for tiles with larger numbers of
clusters and a mixture of different sequences. Samples containing only a
small number of different sequences do not produce reliable estimates.

Sample Information Depending on the application, a reference genome may be supplied for the
read sequences to be aligned against.

16 CHAPTER 2
Core Concepts

Part # 1004759 Rev. A

Alignment Algorithms

The Pipeline provides two alignment algorithms: PhageAlign and ELAND.
PhageAlign performs an exhaustive alignment and always finds the best
match but is very slow.
Efficient Large-Scale Alignment of Nucleotide Databases (ELAND) is very
fast and used to match a large number of reads against the human
genome with no more than two errors in the first 32 bases.

ELAND searches a set of large DNA files for a large number of short DNA
reads allowing up to 2 errors per match. This description is based on the
following definitions:

Large—Human genome size and above, including small genomes
Large number—At least eight million on a PC with 1 GB of RAM
Short—32 bases or less

ELAND is much faster than PhageAlign but will only detect matches with two
differences or fewer from your reads. This means that ELAND is less sensitive
than PhageAlign, which will always find a best match (although possibly not a
unique one) for your reads. Consider the following points when using
ELAND:

If your data is noisy, not all of it is going to align. If this happens to a
significant proportion of your data, then it is possible that your data is
too noisy to get good results.
Error rates based on ELAND output underestimate the true error rate.
Since reads with two or more errors in the first 32 bases do not get
aligned, they do not contribute to the calculation.

Genome Analyzer Pipeline Software v1.0 User Guide 17

Chapter 3

Running the Analysis

Topics
18 Introduction

18 Starting the Genome Analyzer Pipeline Software

19 Running a Standard Analysis

19 Specifying the IPAR Folder

20 Parallelization Switch

20 Nohup Command

21 Command Line Options

21 General Options

22 GOAT Options

22 GOAT and Bustard Options

23 Paired Reads

23 IPAR Analysis

24 Makefile Targets

18 CHAPTER 3
Running the Analysis

Part # 1004759 Rev. A

Introduction

This section describes the standard analysis run and command line options.

The standard invocation of the Pipeline assumes that you are performing
image analysis, base calling, and sequencing alignment on a set of images in
the Run Folder. It also assumes that the images are organized in a standard
Run Folder directory structure as described in Run Folder Structure on
page 9.

To successfully initiate image analysis, you need four images for each tile, for
each cycle, and a parameters (.params) file in the Run Folder.

Starting the Genome Analyzer Pipeline Software

Although several different software programs are involved in an analysis run,
a single command goat_pipeline.py will start the Pipeline automatically, and
then trigger the launch of subsequent utilities.

This is the standard invocation of the Pipeline. Arguments contained in
brackets [] are optional.

/path/Pipeline/Goat/goat_pipeline.py [--cycles=1-
25|auto] [--tiles=s_1,s_2_0003,...]
[--matrix=mymatrix.txt|auto|auto<n>] [--offsets=/
path/default_offsets.txt|auto]
[--phasing=0.01|auto|auto<n>] [--prephasing=0.01]
[--directory=/path/C1-14_Firecrest1.8.20_01-08-
2006_user] [--make]
[--GERALD=/path/config.txt] [--control-lane=5]
<run-folder-directory>|<IPAR directory> [<run-
folder-directory2>]

Some of the arguments above have sample values displayed. The only
compulsory argument is the path to the Run Folder that is to be analyzed.
The path can also point to any folder containing tiff images that are to be
analyzed. Alternatively, you can provide a space-separated list of TIFF
filenames.

Running a Standard Analysis 19

Genome Analyzer Pipeline Software v1.0 User Guide

Running a Standard Analysis

A standard analysis consists of calling the goat_pipeline.py script to generate
an analysis directory using the “make” command, and then executing the
“make” command.

Start a standard analysis run using the following command format:
Pipeline/Goat/goat_pipeline.py
 [--GERALD=<configfile>] [--make] <run-folder>

1. Type the following command to run a check on the Run Folder, report all
detected folders and parameters files, and fill in any missing
configuration options.
Pipeline/Goat/goat_pipeline.py

--GERALD=/data/070813_ILMN-1_0217_FC1234/config.txt
/data/070813_ILMN-1_0217_FC1234

Illumina recommends running this script before generating the makefile
to check for data integrity and consistency. It scans all the images folders
and prints diagnostic output about the images and parameters files. No
files or directories are modified on the data drive as a result of this
command.

2. Add --make to the command listed above to create an analysis directory
in the Run Folder. If you specify the --GERALD option, you will create the
GERALD analysis folder and the corresponding makefile.
Pipeline/Goat/goat_pipeline.py

--GERALD=/data/070813_ILMN-1_0217_FC1234/config.txt
--make /data/070813_ILMN-1_0217_FC1234

3. Change to the newly generated directory (for example, /data/
070813_ILMN-1_0217_FC1234/Data/C1-26_Firecrest) and type the
“make recursive” command. This command starts the actual analysis.
make recursive

For more information on “make recursive,” see Makefile Targets on
page 24.

The primary outputs are the sequences read with per-base quality values
and, if alignment was performed, the alignments. These files can be found in
the GERALD folder. The output files containing data statistics and
histograms, used for quality control, can also be found in the GERALD folder.

A new output directory is created each time you rerun the analysis, so there is
no need to remove any previous analysis files.

Specifying the IPAR
Folder

The Integrated Primary Analysis and Reporting (IPAR) module performs
image analysis and lets you assess the quality of run data in real-time on the
Genome Analyzer. IPAR analysis generates output results which are saved in
the <RunFolder>\Data\<IPAR Folder> created for the run in progress.

20 CHAPTER 3
Running the Analysis

Part # 1004759 Rev. A

Instead of a specifying the Run Folder, you can specify the IPAR folder that
was produced by the IPAR module. The advantage to specifying the IPAR
folder is that the Pipeline will start from base calling using the image analysis
results generated by IPAR. Subsequently, the time for complete analysis of an
experiment is considerably less. In this case, a new folder for image analysis
is not created and the additional Pipeline output is located in the IPAR folder
and related subfolders.

The following prerequisites must be met:
You must be running Pipeline version 1.0. Earlier versions of the Pipeline
software are not compatible with IPAR.
The experiment Run Folder containing the IPAR image analysis results is
copied to the off-line server where Pipeline is running.
The parameters file for the experiment is copied in \RunFolder\Data.

If you are using all mechanisms for data transfer provided by Illumina, the
second and third prerequisites will always be met.

Parallelization
Switch

If your system supports automatic load-sharing to multiple CPUs, you can
parallelize the analysis run to <n> different processes by using the “make”
utility parallelization switch.

make recursive -j n

For more information on parallelization, see Using Parallelization on page 93.

Nohup Command You can use the Unix nohup command to redirect the standard output and
keep the “make” process running even if your terminal is interrupted or if
you log out. The standard output will be saved in a nohup.out file and stored
in the location where you are executing the makefile.

nohup make recursive -j n &

The optional “&” tells the system to run the analysis in the background,
leaving you free to enter more commands.

Command Line Options 21

Genome Analyzer Pipeline Software v1.0 User Guide

Command Line Options

You can invoke the goat_pipeline.py and bustard.py scripts with a number of
optional command line arguments.

General Options Any of the following general options can be included in any order on a single
command line.

--make

The --make command creates the analysis directory and a makefile in the
relevant analysis directory. You can start the analysis by changing to the
directory and typing “make.” If this option is omitted, the Pipeline will not
write any information to your Run Folder.

--new-read-cycle=<cycle>

Use this command to start a new read in a paired-end run. The calculation of
the matrix correction and the application of the phasing correction will be
reset at the specified cycle.

--GERALD=<config.txt>

Use this command to start the GERALD makefile generator after the Bustard
folder is created. You can specify multiple GERALD files by repeating the
option with different configuration file names. For each GERALD
configuration file specified, a separate GERALD subfolder is generated
(under the same Bustard folder) with that configuration. For more information
on the GERALD configuration file, see GERALD Configuration File on
page 35.

--tiles=<tile>|<lane>[,<tile>|<lane>,...]

Use this command to select certain tiles for analysis. For example, specifying
--tiles=s_1,s_2_01,s_3_0001,s_5_0002 selects all tiles in lane 1, all tiles
starting with “01” in lane 2, position 1 in lane 3, and position 2 in lane 5.

You can also specify certain tiles for analysis from every lane. For example,
specifying --tiles=_0010,_0020 selects only tiles 10 and 20 from every lane.

--cycles=<cycle>[-<cycle>[,<cycle>[-<cycle>...]]]:

Use this command to select certain cycles for analysis. For example, use
--cycles=3–31 to include only cycles 3 through 31 in the analysis.

Using the value “auto” tells the Pipeline to automatically select the lowest
number of cycles present in any of the tiles and to make sure that all tiles
have equal read lengths, regardless of the state of data acquisition/mirroring.

NOTE
If you skip cycles in the middle of a read, you cannot use
ELAND to align the data.

22 CHAPTER 3
Running the Analysis

Part # 1004759 Rev. A

--compression=<method>

Use “--compression” to reduce the size of the Firecrest output. Allowed
values are “none,” “gzip” (the default), and “bzip2.”

In the Pipeline version 0.3 and later, the intensity files are compressed by
default. For previous versions, you must specify “--compression=none” on
the command line.

GOAT Options Use the following options with the goat_pipeline.py script.

--nobasecall

Use --nobasecall to skip the base calling step in the analysis.

--offsets=<filename>|auto|default

Use --offsets=<filename> to specify a certain default offset file. If no offset
file is specified, the Pipeline will create one in the Instruments folder.

GOAT and Bustard
Options

Use the following options with goat_pipeline.py and bustard.py scripts.

--control-lane=<n>

Use this command to select a lane <n> that is to be used to estimate phasing
and matrix correction for all other lanes. This option is synonymous with
--phasing=auto<n> --matrix=auto<n>. Control lanes are necessary for
samples with skewed base compositions.

--matrix=<filename>|auto|auto<n>|lane

Use the --matrix command to specify the frequency cross-talk matrix file,
where filename refers to the path of the matrix file.

If no matrix is specified, or if you set the value to the default behavior “auto,”
the Pipeline auto-generates the matrix. A value of auto<n>, where <n> is a
lane number between 1 and 8, is analogous to the --phasing=auto<n>
option and allows the matrix estimation to be derived from only one lane.

--phasing=<x>|auto|auto<n>

Use the --phasing command to apply a particular phasing correction. If you
set the value to the default behavior “auto,” the Pipeline auto-generates the
phasing and prephasing values.

A value of auto<n>, where <n> is a lane number between 1 and 8, uses the
automated phasing estimates from the corresponding lane. This is useful for
samples with an uneven base composition (such as in gene expression), for
which the current phasing estimator does not work reliably and phasing
needs to be estimated from a single control lane.

You can specify a phasing value directly. For example, --phasing=0.01
indicates a phasing correction with a rate of 1% per cycle (1% of molecules in
a cluster fall behind the other molecules). In this case, the option is normally
combined with the --prephasing option.

Command Line Options 23

Genome Analyzer Pipeline Software v1.0 User Guide

--prephasing=<x>

Use the --prephasing command to apply a particular correction for
prephasing. For example, using --prephasing=0.01 sets a correction for
prephasing with a prephasing rate of 1% per cycle.

The command --prephasing=auto is not recognized. Use --phasing=auto
instead. By default the Pipeline autogenerates phasing estimates.

Paired Reads The following additional variations on the goat_pipeline.py and bustard.py
options are supported for paired reads.

--phasing=<read>:value, --phasing=<read>:<read>

Use this command to specify phasing options for one specific read of a pair.

The following example uses the default phasing option for read 1 but uses
base phasing estimates from lane 5 for read 2:

--phasing=1:auto --phasing=2:auto5

The following example uses the phasing estimate for the second read and
applies it to both read 1 and read 2:

--phasing=1:2

--matrix=<read>:value, --matrix=<read>:<read>

Use this command to specify matrix options for one specific read of a pair.
This is analogous to the phasing options listed above.

IPAR Analysis Image analysis data generated with IPAR can be processed by the Pipeline
software. Pipeline performs base calling after calculating the cross-talk
matrix, phasing, and prephasing values.

Specify the IPAR folder as an argument to goat_pipeline.py instead of the
Run Folder:

goat_pipeline.py <IPAR folder>

If the Run Folder is specified instead of the IPAR folder, the Pipeline will
restart image analysis.

1. Invoke the goat_pipeline.py script to generate the Pipeline makefiles and
analysis directory.
<path to Pipeline>/Goat/goat_pipeline.py <IPAR Folder>

--make

You must specify the entire path to the IPAR analysis folder. A typical
IPAR 1.0 folder and path may be as follows:
data/070813_ILMN-1_0217_FC1234/Data/IPAR_1.0

The IPAR version number in the folder name is the version number of the
IPAR system generating the analysis.
All standard Pipeline variables are available for use with the IPAR folder.
For example, you can use --GERALD=config_file.txt to specify alignment
information.

2. To execute the makefiles, navigate to the IPAR folder and use “make
recursive.”
cd <Run Folder>/Data/<IPAR Folder>

24 CHAPTER 3
Running the Analysis

Part # 1004759 Rev. A

make recursive

Using “make all” will generate the matrix file in the IPAR directory, but
will not initiate base calling.

Makefile Targets Both goat_pipeline.py and bustard.py scripts generate makefiles in the
relevant image analysis and base caller directories that allow the complete
analysis to be run by GNU Make. The makefiles have the following
advantages:

Not all of the analysis needs to be run immediately.
On a multiprocessor system or cluster, the analysis can easily be
parallelized by specifying the “-j” option for “make.”
In case of any failure or interruption during an analysis run, the run can
easily be restarted at the last point.

The following optional targets are used with the “make” command.

all

All is the default makefile target. It runs the complete analysis in the current
directory (image analysis or base caller).

<sample>_<lane>

This target analyzes all tiles in a lane. For example, use make s_1 s_2 to
analyze lanes 1 and 2.

<sample>_<lane>_<tileindex>

This target analyzes a specific tile only. For example, use make s_1_0007 to
analyze lane 1, tile 7. This target is incompatible with auto-generated
matrices and phasing estimates.

_<tileindex>

This target analyzes all tiles with the given index from any lane and is useful
for analyzing randomly chosen subsets of a tile. For example, use
make _0020 _0040 _0060 to analyze tiles with indices 20, 40, 60 in all lanes.

This target is currently incompatible with auto-generated matrices and
phasing estimates.

-j <n>

This parallelization switch can be used with the “make” command to execute
the Pipeline run in parallel over <n> number of processor cores. For a
description of parallelization, see Using Parallelization on page 93.

clean

This target removes all analysis output files. You would use “make clean”
when you are low on disk space.

CAUTION
Using “make clean” removes all analysis results from the
folder where the command is executed. Use with care.

Command Line Options 25

Genome Analyzer Pipeline Software v1.0 User Guide

recursive

This target performs the analysis in the current directory and in all available
subdirectories. Use this target to start a complete end-to-end analysis run
from image analysis or base calling to sequence alignment using a single
command.

The following example starts recursive full analysis:
make recursive

Specify the target by setting the TARGET environment variable. The
following example removes all analysis results from ALL subfolders:

make recursive TARGET=clean

The recursive option is not compatible with tile and lane-specific targets.

compress

This target uses gzip to apply a loss-less compression to the output files after
an analysis run. This significantly reduces the size of the analysis folders.
Typically, the Firecrest and Bustard folders are reduced to 1/3 and 1/4 of their
original size.

In the compressed state, no further analysis is possible. The folder must be
uncompressed in order to reanalyze it.

uncompress

This target uncompresses a folder that has previously been compressed and
returns it to its original state.

compress_images

This target uses bzip2 to compress the image data in the Images folder. This
can take a significant amount of time, but reduces the size of the Images
directory to about 60% of its original size.

In the compressed state, no further analysis is possible. The folder must be
uncompressed in order to reanalyze it.

uncompress_images

This target uncompresses the Images folder that has previously been
compressed and returns it to its original state.

26 CHAPTER 3
Running the Analysis

Part # 1004759 Rev. A

Genome Analyzer Pipeline Software v1.0 User Guide 27

Chapter 4

Using GERALD

Topics
28 Introduction

29 GERALD Parameters

29 ANALYSIS Variables

30 Analysis Parameters

31 Filtering Parameters

31 USE_BASES Option

32 Lane-by-Lane Parameters

33 FORCE Option

33 Rerunning the Analysis

33 Contaminant Filtering

35 GERALD Configuration File

36 Lane-Specific Options

36 Optional Parameters

37 Paired-End Analysis Options

38 Preparing the Reference Genome

40 ELAND Alignments

41 Missing Bases in ELAND

41 Using ANALYSIS eland_tag

42 Using ANALYSIS eland_extended

43 Using ANALYSIS eland_pair

28 CHAPTER 4
Using GERALD

Part # 1004759 Rev. A

Introduction

GERALD is the module that performs sequence alignments, visualization,
produces statistics, and analysis output in a series of diagnostic QC plots and
summary tables. These are presented in the form of html pages found in the
GERALD output folder.

GERALD is usually run automatically as part of an overall Pipeline analysis but
can also be run independently. For more information, see Running GERALD
as a Standalone Program on page 67.

As a result of running the GERALD.pl script, a new directory is created and
named using the format GERALD_DD-MM-YYYY_user where the date is the
current date and user is your computer login. If you want to rerun the analysis
and change parameters, you can rerun GERALD with new parameters. A new
directory will be created and no information will be overwritten.

GERALD uses multiple analysis parameters. Therefore, it is recommended to
include the parameters in a configuration file and provide that file as input to
GERALD.

You can define GERALD analysis parameters in the configuration file or in the
command line. Command line arguments take precedence over parameters
set in the configuration file. For a full description of analysis parameters and
variables, see GERALD Parameters on page 29.

The following is an example of a GERALD invocation using a configuration
file and command line arguments:

GERALD.pl config.txt --EXPT_DIR
/data/070813_ILMN-1_0217_FC1234/Data/C1-

27_Firecrest1.9.0_23-08-2007-user/Bustard1.9.0_23-
08-2007_user/

--FORCE --GENOME_DIR /data/Genomes --GENOME_FILE
BAC_plus_vector.fa

This section describes the GERALD parameters, analysis variables,
configuration file options, and ELAND alignments.

GERALD Parameters 29

Genome Analyzer Pipeline Software v1.0 User Guide

GERALD Parameters

GERALD can be run in various analysis modes. Your analysis can be
customized by specifying variables, parameters, and options.

ANALYSIS Variables Set the ANALYSIS variable to define the type of analysis you want to perform
for each lane. The various analysis modes include default, sequence, eland,
eland_extended, eland_tag, eland_pair, none, and monotemplate. You can
mix and match analyses between lanes.

For all modes, except ANALYSIS none, you will get a sequence output file
(s_N_sequence.txt) for each lane.

Table 3 ANALYSIS Variables

Variable
Alignment
Program

Application Description

ANALYSIS eland_extended ELAND Single reads An improved version of ANALYSIS eland for analyzing
single-read data.

• Better handling of > 32 base reads
• Each alignment is given a confidence value based

on its base quality scores
• A single file of sorted alignments is produced for

each lane
For a detailed description, see Using ANALYSIS
eland_extended on page 42.

ANALYSIS eland_pair ELAND Paired reads Aligns paired-end reads against a target using ELAND
alignments. A single-read alignment is done for each
half of the pair, and then the best-scoring alignments
are compared to find the best paired-read alignment.
For a detailed description, see Using ANALYSIS
eland_pair on page 43.

ANALYSIS eland_tag ELAND Gene
Expression

Aligns reads to a non-redundant reference set of
separate sequence tags and produces exact matches.
For additional information, see Using ANALYSIS
eland_tag on page 41.

ANALYSIS monotemplate PhageAlign Single reads Aligns to a tag set using PhageAlign.
Setting the parameter 6:ANALYSIS monotemplate
performs monotemplate analysis for lane 6, where you
can expect each read to be one of a small number (20
or less) of known template sequences. The reads are
aligned using PhageAlign in tag mode, which treats
each line of the reference sequence as a separate tag.
No coverage plots will be produced since they are not
relevant here. Some monotemplate-specific output is
produced instead.

ANALYSIS sequence None Single reads
Paired reads

Produces one file of sequence output per lane with no
alignment.
Setting the parameter 6:ANALYSIS sequence produces
a file named s_6_sequence.txt. This file contains all
sequences in a lane of a flow cell in an exportable
format.

30 CHAPTER 4
Using GERALD

Part # 1004759 Rev. A

Analysis Parameters The content of the output file is determined by the following analysis
parameters.

ANALYSIS sequence_pair None Paired reads Produces two files of sequence output per lane, with no
alignment. For example, s_1_1_sequence.txt and
s_1_2_sequence.txt contain sequence output, one file
for each half of the read pair.

ANALYSIS none None Any
application

Omits the indicated lane from the analysis.
Setting the parameter 8:ANALYSIS none ignores lane 8.

ANALYSIS default PhageAlign Single reads Aligns each read against a reference sequence using
PhageAlign.
This mode is suitable only for small genome references.

ANALYSIS eland ELAND Single reads Aligns each read against a large reference sequence
using ELAND.
Setting the parameter 6:ANALYSIS eland runs an
ELAND whole-genome analysis for lane 6. You need to
use ELAND if your reference sequence exceeds 1 MB in
size. No coverage files will be generated. For more
information on ELAND, see ELAND Alignments on
page 40.

ANALYSIS expression PhageAlign Gene
Expression

Aligns reads to a tag set using PhageAlign. This analysis
mode is deprecated in favor of ANALYSIS eland_tag.

Table 3 ANALYSIS Variables (Continued)

Variable
Alignment
Program

Application Description

Table 4 Analysis Parameters

Parameter Description

USE_BASES Use this parameter to identify bases to be used for alignment analysis.
The USE_BASES string uses an asterisk (*) to indicate “fill up the read
as far as possible with the preceding character.”
If USE_BASES all is set, all sequenced bases will show up in the analysis
results. Otherwise, only cycles which have a Y at the corresponding
position in the USE_BASES string will appear in the results.
For a detailed description of USE_BASES syntax, see USE_BASES
Option on page 31.

QF_PARAMS Use this parameter if you want to use filtering different than the default
filter. Set QF_PARAMS '(1==1)' to pass all of them. For information on
default filtering, see Filtering Parameters on page 31.

GERALD Parameters 31

Genome Analyzer Pipeline Software v1.0 User Guide

Filtering
Parameters

GERALD uses filtering to remove low-quality base calls. By default, a filter
discards all clusters with a ratio less than or equal to 0.6 between the highest
and the sum of the highest two intensities for the first 12 cycles.

Alternative to the default filter called CHASTITY, the filters PURITY and
NEIGHBOUR can be used:

CHASTITY—The ratio of the brightest intensity over the sum of the
brightest and second brightest intensities per base
PURITY—The ratio of the brightest intensity over the sum of all of the
four intensities per base
NEIGHBOUR—Distance in pixels to the nearest neighboring cluster

USE_BASES Option The USE_BASES option identifies which bases of a full read produced by a
sequencing run should be used for the alignment analysis. A fully expanded
USE_BASES value is a string with one character per sequencing cycle but
more compact formats can be used as described in Table 5 on page 32. Each
character in the string identifies whether the corresponding cycle should be
aligned. The following notation is used:

A lower-case “n” means ignore the cycle.
The first base could be ignored because it is part of the sequencing
primer. The last base could be ignored because it is not corrected for
prephasing and may have higher error rates.
An upper-case “Y” means use the cycle for the alignment.
A comma (,) denotes a read boundary used for multiple reads.

SEQUENCE_FORMAT This parameter specifies what format to use for data export in the
s_N_sequence.txt file. Allowed values are --fasta, --fastq, or --SCARF.

• fasta—This format is widely used but does not contain quality
scores.

• fastq—This format is an adaption of the fasta format that contains
quality scores. However, the fastq format is not completely
compatible with the fastq files currently in existence, which is read
by various applications (for example, BioPerl). Because a larger
dynamic range of quality scores is used, the quality scores are
encoded in ASCII as 64+score, instead of the standard 32+score.
This method is used to avoid running into non-printable
characters.

• SCARF (Solexa compact ASCII read format)—This easy-to-parse
text based format, stores all the information for a single read in
one line.

QUALITY_FORMAT Allowed values are --numeric and --symbolic.
• --numeric outputs the quality values as a space-separated string of

numbers.
• --symbolic outputs the quality values as a compact string of ASCII

characters. Subtract 64 from the ASCII code to get the
corresponding quality values. Under the current numbering
scheme, quality values can theoretically be as low as -5, which has
an ASCII encoding of 59=';'.

Table 4 Analysis Parameters (Continued)

Parameter Description

32 CHAPTER 4
Using GERALD

Part # 1004759 Rev. A

An asterisk (*) means “fill up the read as far as possible with the
preceding character.”
A number means that the previous character is repeated that many
times. Unspecified cycles are set to “n” by default. If USE_BASES is not
specified at all, every cycle is used for the alignment.

The following table describes examples of USE_BASES options.

Lane-by-Lane
Parameters

You can set the analysis parameter and other parameters on a lane-by-lane
basis. You will need to do this for any parameters specific to the analysis of a
particular lane.

Table 5 USE_BASES Options

Option Definition

USE_BASES nYYY Ignore the first base and use bases 2–4.

USE_BASES Y30 Align the first 30 bases.

USE_BASES nY30 Ignore the first base and align the next 30 bases.

USE_BASES nY30n Ignore the first base, align the next 30 bases, and ignore the last base.

USE_BASES nY*n Ignore the first base, perform a single read, and ignore the last base.
The length of read is automatically set to the number of sequencing
cycles minus two.

USE_BASES nY*,nY* Ignore the first base of each read and perform a paired read, resulting
in the length of each read being set to the number of sequencing
cycles associated with it minus one. The two reads do not need to be
of the same length.

USE_BASES nY* When used with ANALYSIS eland_pair, this is an abbreviation for
USE_BASES nY*,nY*.
When used with a single-read analysis mode, this means ignore the
first base and perform a single-read.

USE_BASES all Use all bases.

Table 6 Lane-by-Lane Parameters

Option Definition

6:ELAND_GENOME/directory/
genome

Specify the name of the file containing the reference sequence for
lane 6.

67:ELAND_GENOME/directory/
genome

Specify the name of the file containing the reference sequence to use
for lanes 6 and 7.

GERALD Parameters 33

Genome Analyzer Pipeline Software v1.0 User Guide

FORCE Option The FORCE option creates GERALD directories and makefiles. Without the
FORCE option, GERALD will not create any directories and files and only
operates in a diagnostic mode. You must specify this option to generate the
GERALD analysis folder and subsequently run the analysis.

Rerunning the
Analysis

The config.txt file used to generate an analysis is copied to the analysis folder
so it can be used by GERALD if a reanalysis of the same data is required. To
change parameters and rebuild the analysis, modify the configuration file and
run the following command:

GERALD.pl config.txt --FORCE

By adding the OUT_DIR option, you can force GERALD to overwrite an
existing makefile. This way you can modify the analysis without directly
editing the makefile.

Contaminant
Filtering

Contaminant filtering can be used with the variables ANALYSIS default and
ANALYSIS eland. However, most of the time it is not needed.

GERALD attempts to filter contaminant sequences in a rigorous way by
comparing the alignment of each read against the data versus the best
alignment to the contaminant sequences. A one-sequence-per-line ASCII file
is expected, with each sequence being at least READ_LENGTH bases in
length.

To switch contaminant filtering on, specify the name of the file containing
contaminant sequences in CONTAM_FILE. It is assumed that the
CONTAM_FILE is located in GENOME_DIR. If it is not, specify the location in
CONTAM_DIR.

Building an SRF
Archive

With version 1.0, the Pipeline is distributed with a modified version of io_lib
and allows the generation of SRF archives. This is done by adding the
following line in the config.txt file:

1:SRF_ARCHIVE_REQUIRED yes

Including the Quality Calibration Scores

The modified version of io_lib distributed with the Pipeline also supports the
inclusion of the quality calibration scores into the SRF archives. Add the
following line in the config.txt file:

1:SRF_QCAL yes

3:QF_PARAMS='((NEIGHBOUR>=
5.0)&&(PURITY>=0.7)&&((
TILE!=4)||(X_COORD>50))
)'

Set the quality filtering parameter, QF_PARAMS, on a lane-by-lane
basis.
For example, if the clusters near the left edge of tile 4 of lane 3 look
questionable, use this command to set the filter.
You can use any Boolean Perl expression as a filter parameter. The
variable names are aliases to fields in a tab-separated text file.
The best way to filter out individual tiles is to set BAD_TILES to be a list
of the tiles you want to filter. See Optional Parameters on page 36 for
an example of the BAD_TILES parameter.

Table 6 Lane-by-Lane Parameters (Continued)

Option Definition

34 CHAPTER 4
Using GERALD

Part # 1004759 Rev. A

Extracting the Data from the Archive

The data is extracted from the archive by an io_lib utility called srf2illumina.
The standard distribution of io_lib is able to extract the data from the archive
with the exception of the quality scores. The modified version distributed
with the Pipeline is required to include the quality scores.

GERALD Configuration File 35

Genome Analyzer Pipeline Software v1.0 User Guide

GERALD Configuration File

This section describes a typical GERALD configuration file that uses the
current features and parameters.

As part of the creation of the GERALD output folder, the GERALD
configuration file specified (whether using the --GERALD option of
goat_pipeline.py or directly as the argument to GERALD.pl) is copied to the
GERALD output folder using the filename config.txt. Some sites use standard
configuration files, which may be stored in a central repository.

The GERALD configuration file specifies what analysis should be done for
each lane, which GERALD translates into a makefile. The makefile specifies
exactly what commands should be executed to carry out the requested
analysis.

Table 7 GERALD Configuration File Parameters

Parameter Definition

EXPT_DIR data/070813_ILMN-
1_0217_FC1234/Data/C1-
27_Firecrest1.9.0_23-08-
2007-user/Bustard1.9.0_23-
08-2007_user/

Provide the path to the experiment directory, if not specified
on command line or auto-completed by goat_pipeline.py.

OUT_DIR /home/user/Test4 Indicate the output directory, if other than a new GERALD
folder inside of the EXPT_DIR folder.

USE_BASES nY*n Ignore the first and last base of the read.
The USE_BASES string contains a character for each cycle.

• If the character is “Y,” the cycle is used for alignment.
• If the character is “n,” the cycle is ignored.
• Wild cards (*) are expanded to the full length of the read.

For a detailed description of USE_BASES syntax, see
USE_BASES Option on page 31.

ELAND_GENOME /home/user/Genomes/
Eland/BAC_plus_vector/

Specify the genome reference for alignment with ELAND.

GENOME_DIR /home/user/Genomes Specify where the genome file is located.

ANALYSIS eland Align against a genomic sample and allow alignments to
arbitrary positions of the provided reference.

READ_LENGTH 25 This parameter is no longer used with software version 0.3
and later.
Specify the read length for the experiment.
This is the read length used for the alignments, not the
sequenced read length. Consequently, the value has to be
less than or equal to the sequence length. It is useful to force
the wild card expansion of USE_BASES to a predefined value.

36 CHAPTER 4
Using GERALD

Part # 1004759 Rev. A

Lane-Specific
Options

The following table describes the lane-specific parameters in a GERALD
configuration file.

Optional
Parameters

The following table describes the optional parameters in a GERALD
configuration file.

Table 8 GERALD Configuration File Lane-Specific Options

Parameter Definition

7:USE_BASES nY20 Align only 20 cycles for lane 7, starting with the second cycle.

567:ANALYSIS sequence
567:USE_BASES all

Output sequence information for lanes 5, 6, and 7 only (no
alignments are performed).

8:ANALYSIS none Omit lane 8, which only contains primers.

3:QF_PARAMS
'((NEIGHBOUR>=3.0)&&(CHASTIT
Y>=0.7)&&(X_COORD>50))'

Filter parameters using the default (CHASTITY>=0.6). This
example includes only those clusters with a separation of at
least three pixels, with a CHASTITY filtering greater than or
equal to 0.7, and an X coordinate greater than or equal to 50.

Table 9 GERALD Configuration File Optional Parameters

Parameter Definition

EMAIL_LIST user@example.com
user2@example.com

EMAIL_SERVER mailserver
EMAIL_DOMAIN example.com

[Optional] Send notification to the user at end of an analysis
run.
For more information on email notification, see Setting Up
Email Reporting on page 75.

WEB_DIR_ROOT file://
server.example.com/share

[Optional] Include hyperlinks with a specific prefix to the Run
Folder.

BAD_TILES s_1_0001 s_2_0003 Identify bad tiles. These tiles will be aligned but excluded
from coverage.

POST_RUN_COMMAND /yourPath/
yourCommand yourArgs

Allows user-defined scripts to be run after all GERALD targets
have been built.

GERALD Configuration File 37

Genome Analyzer Pipeline Software v1.0 User Guide

Paired-End Analysis
Options

The following table describes the paired-end analysis options in a GERALD
configuration file.

For more information on USE_BASES syntax, see USE_BASES Option on
page 31.

Table 10 GERALD Configuration File Paired-End Analysis Options

Parameter Definition

ANALYSIS eland_pair Use the paired-end alignment mode of ELAND to align paired
reads against a target.

USE_BASES Y*,nY*n Use all bases on the first read and ignore the first and last
base of the second read.

6:USE_BASES nY25 Ignore the first base on both the first and second read; use 25
bases each and ignore any other bases.

38 CHAPTER 4
Using GERALD

Part # 1004759 Rev. A

Preparing the Reference Genome

Several of the GERALD analysis modes (namely eland, eland_extended,
eland_pair, and eland_tag) make use of the ELAND alignment program to
align the reads produced by the Pipeline against a set of reference
sequences. Before you can run an analysis that uses ELAND, you need to
obtain the reference sequences you wish to align against in fasta format and
convert or “squash” them into the format that ELAND can read. This is done
by running a program squashGenome that is provided as part of the Pipeline
installation.

The outcome of the squashing process is a folder containing a set of files that
encode the reference sequences in a 2-bits-per-base binary format that is not
human readable. Squashing only needs to be done once for each set of
reference sequences you are interested in aligning against. For example, if
you were doing some mouse and some human sequencing, you might create
a folder containing a squashed version of the mouse genome and another
folder containing a squashed version of the human genome (you probably do
not want to squash both genomes into the same folder). Once created, a
squashed folder can be copied between machines or placed on a shared
drive, so as to be accessible from multiple machines. You specify the path of
this folder as a parameter ELAND_GENOME when creating the configuration
file for any analysis that involves ELAND.

See Using ANALYSIS eland_tag on page 41 for additional instructions on
preparing a set of sequence tags for use as a reference sequence in
eland_tag mode.

The fasta file format is very well known. Here is an example:
>chromosome:NCBI36:X:1:154913754:1
CTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTCTGAAAGTGG
ACCTATCAGCAG
GATGTGGGTGGGAGCAGATTAGAGAATAAAAGCAGACTGCCTGAGC
CAGCAGTGGCAACC

Please note that the names of the entries in any fasta files to be squashed
cannot contain spaces. In eland_pair and eland_extended, the names of the
entries cannot contain spaces, commas, or colons.

1. You must first create an empty folder for the squashed files to go into.
mkdir path/myGenome

2. Go to the location of the fasta format reference sequence files and enter
the following command:
<Pipeline>/Eland/squashGenome <path>/myGenome

fastaFile1.fa [fastaFile2...]

where <Pipeline> denotes the full path of the Pipeline installation
location and <path> denotes the full path to the folder myGenome you
created in step 1. This will cause files fastaFile1.fa.2bpb and
fastaFile1.fa.vld to be created in folder myGenome.

Prior to Pipeline version 0.3, there was a restriction of a single entry per fasta
file for the reference sequences. For Pipeline version 0.3 and later, this
restriction has been removed and fasta files with multiple entries can be
squashed.

Preparing the Reference Genome 39

Genome Analyzer Pipeline Software v1.0 User Guide

For reasons of efficiency, ELAND thinks of the reference sequence as being in
“blocks” of 16 MB, of which there can be at most 240. This limits the total
length of DNA that ELAND can match against in a single run.

In a single ELAND run you can match against:
One file of at most 240 x 16=3824 MB
239 files, each up to 16 MB in size
Something in between, such as 24 files of up to 160 MB each. (The NCBI
human genome will fit.)

Each file in the reference sequence must take up at least one block, so if you
have a large number of short sequences to align against, you should place
them in a single large file as individual fasta-format entries.

The squashed genome directory must contain only files produced by the
SquashGenome program. Any other types of files will result in errors during
the search. This prohibition extends to subdirectories as well.

NOTE
ELAND does not check that the directory of squashed
genomes it is matching against exceeds these limits.

40 CHAPTER 4
Using GERALD

Part # 1004759 Rev. A

ELAND Alignments

Ensure the configuration file you use to run GERALD contains the following
components:

The path to your squashed genome files:
ELAND_GENOME /usr/local/share/eland/ncbi35

The path to your list of repeats (optional):
ELAND_REPEAT /usr/local/share/eland/reps30_5

This can significantly speed up alignment against large targets.
The analysis variable to run ELAND:
ANALYSIS eland

Particular lanes that you want to analyze in the analysis variable:
34:ANALYSIS eland

This example indicates that lane 3 and 4 will be analyzed.

After setting up the GERALD configuration file, you should be able to run
“make.” The script convertToFasta.pl converts and concatenates all the reads
into a single large fasta file which is then used as an input to ELAND. The
script convertFromELAND.pl converts the results back into the by-tile
PhageAlign format expected by the rest of the Pipeline.

ELAND operates on a lane-by-lane basis and uses up to 1 GB of memory.
The Pipeline starts one ELAND job per lane. To prevent most computers from
running out of memory, an artificial dependency in the GERALD makefile
prevents multiple instances of ELAND from running at the same time. You
can remove this limitation by using the following option in the GERALD
configuration file:

ELAND_MULTIPLE_INSTANCES 8

Be aware that this may use up to 8 GB of memory on your analysis computer.
If insufficient memory is available, the analysis is likely to crash. Allowed
values for this option are 1, 2, 4, and 8. A value of 1 indicates no lane
parallelization and uses up to 1 GB of RAM, a value of 2 indicates two parallel
jobs and uses up to 2 GB, etc.

NOTE

ELAND_GENOME refers to a directory, not a file. The usual
GERALD variables GENOME_DIR and GENOME_FILE are
not used for ELAND analysis. ELAND expects a different file
format other than fasta.
You can only specify one ELAND_GENOME per lane.

ELAND Alignments 41

Genome Analyzer Pipeline Software v1.0 User Guide

Missing Bases in
ELAND

Missing bases need to be specified as “N” characters and not “.” as in the
sequence files. This conversion is managed automatically by GERALD but
you need to be aware of it when running ELAND as a standalone program.
For additional information on ELAND, see Running ELAND as a Standalone
Program on page 68.

ELAND allows up to four external “N” characters at the beginning or end of
the read. These bases are ignored.

ELAND allows up to two internal “N” characters, which are interpreted in one
of two ways: “type D” for detection error and “type I” for insertion error.

In a “type D” match, “N” indicates the base is there but not detected.
Read: ACNGT
Genome: ACCGT
In a “type I” match, “N” indicates a base has been skipped.
Read: ACNGT
Genome: AC-GT

“Type D” and “type I” characters are given equal weight.

When lining up bases in your read with bases they align to in the reference,
ignore any leading N characters and ignore any “type I” N characters
because they are non-existent bases.

Most N characters are due to clusters wandering off the edge of the image
for a cycle or two due to imperfect re-mapping of the tile position at different
cycles. This produces a “type D” error. Otherwise, the Pipeline software will
try to make a base call, even if the call is of low quality.

Using ANALYSIS
eland_tag

For gene expression samples and other tag-counting applications, you can
use ANALYSIS sequence to get purity-filtered sequences. These sequences
are matched to the reference tag sets resulting in exact matches only. Using
ANALYSIS eland_tag to align experimental reads to a reference set produces
not only exact matches but also one or two mismatches.

In addition to the standard output files, ANALYSIS eland_tag creates a tag
count file (s_N_tagcount.txt) for each lane that collapses and counts each
distinct sequence. You can also specify GROUP_LANES. For example,
GROUP_LANES 124 65 produces a file containing combined tag counts for
each group of lanes in addition to a file for each lane.

ANALYSIS eland_tag uses ELAND to align to a non-redundant set of
annotation tags. Illumina provides human and mouse annotation that
consists of a non-redundant set of all possible GATC+16 or CATG+17
sequences in the genome and transcriptome, choosing the best annotation
for each distinct sequence. You may also use publicly available annotation for
SAGE tags or generate your own.

Squashing tag sets for eland

A separate fasta file should be prepared for each annotation tag set with one
fasta header per file and each tag separated by Ns.

The following two examples show the beginning of a fasta file:
>mouseTranscrCanonicalCATG
AAAAAAAAAAAAATCAC
NNNNNNNNNNNNNNNNN

42 CHAPTER 4
Using GERALD

Part # 1004759 Rev. A

AAAAAAAAAAAACTTGA
NNNNNNNNNNNNNNNNN
AAAAAAAAAACAGCAAA
NNNNNNNNNNNNNNNNN
AAAAAAAAAACATAAAT
NNNNNNNNNNNNNNNNN
AAAAAAAAAAGAAAAAA
NNNNNNNNNNNNNNNNN
AAAAAAAAAATGGCTAA
NNNNNNNNNNNNNNNNN
AAAAAAAAATGGGTTCA
NNNNNNNNNNNNNNNNN
AAAAAAAATCCTTATGT
NNNNNNNNNNNNNNNNN

>mouseMITO_CATG
CAAACCTCCATAGACCG
NNNNNNNNNNNNNNNNN
TGTAATTTTACCTCTAA
NNNNNNNNNNNNNNNNN
ACCAATGAACACTCTGA
NNNNNNNNNNNNNNNNN
AAATCTTCTGGGTGTAG
NNNNNNNNNNNNNNNNN
AACGGCTAAACGAGGGT
NNNNNNNNNNNNNNNNN
CTAGTCCCTAATTAAGG
NNNNNNNNNNNNNNNNN
AATATTTCAACAACAAA
NNNNNNNNNNNNNNNNN
TTCCTAGTTGTTTATAG
NNNNNNNNNNNNNNNNN
ACAAAAAATTGCTCCCC
NNNNNNNNNNNNNNNNN

The fasta files are squashed as any other reference genome files. The first
four bases (CATG or GATC) are stripped from the annotation tags because
they are part of the sequencing primer.

ANALYSIS eland_tag aligns to one strand only. The annotation tags are non-
symmetrical with a restriction site (GATC or CATG) on the left side only.

Using ANALYSIS
eland_extended

ANALYSIS eland_extended is an improved version of the ANALYSIS eland
mode. ANALYSIS eland can align reads longer than 32 bases but demands
that the first 32 bases of the read have a unique best match in the genome.
The position of this match is used as a “seed” to extend the match along the
full length of the read. ANALYSIS eland_extended removes the uniqueness
restriction by considering multiple 32 base matches to be considered and
extended.

ELAND Alignments 43

Genome Analyzer Pipeline Software v1.0 User Guide

Configuring ANALYSIS eland_extended

There are two parameters that affect the output of the alignment,
ELAND_SEED_LENGTH and ELAND_MAX_MATCHES. Both parameters can
be specified lane-by-lane.

The following table describes the parameters for ANALYSIS eland_pair.

Both ANALYSIS eland_extended and ANALYSIS eland_pair share a common
export file that contains all read, quality value, and alignment information for
a lane of data.

ANALYSIS eland_extended produces a single file per lane
(s_N_export.txt).
ANALYSIS eland_pair produces two files, one for each of the two reads
(s_N_1_export.txt and s_N_2_export.txt).

For a detailed description of the export.txt files, see Text-Based Analysis
Results on page 58 and Output File Formats on page 86.

Using ANALYSIS
eland_pair

Based heavily on ANALYSIS eland_extended, ANALYSIS eland_pair allows
the analysis of a paired-read run using ELAND alignments. As part of the
analysis, it will:

Remap all clusters across both runs to the clusters found in the first cycle
of the first read.
Reset the matrix and matrix calculation after the end of the first read.

Generate sequence strings whose combined length is equal to the sum
of the lengths of each individual read.

The following files are produced for read 1 and read 2, and have identical
format and function to the corresponding single-read files:

s_N_1_qraw.txt and s_N_2_qraw.txt
s_N_1_eland_query.txt and s_N_2_eland_query.txt
s_N_1_eland_multi.txt and s_N_2_eland_multi.txt
s_N_1_frag.txt and s_N_2_frag.txt
s_N_1_eland_extended.txt and s_N_2_eland_extended.txt

Table 11 Parameters for ANALYSIS eland_extended

Parameter Description

ELAND_SEED_LENGTH By default, the first 32 bases of the read are used as a “seed” alignment.
Setting ELAND_SEED_LENGTH to 25, will use 25 bases for the initial seed
alignment. This should increase the sensitivity since two errors per 25 bases
is less stringent than two errors per 32 bases.
A read is more likely to be repetitive at the 25 base level than at the
32 base level, so a decrease in ELAND_SEED_LENGTH should probably be
used in conjunction with an increase in ELAND_MAX_MATCHES.
Setting this to very low values will drastically slow down the alignment time
and will probably result in a lot of poor confidence alignments.

ELAND_MAX_MATCHES By default, ANALYSIS eland_extended will consider at most 12 alignments
of each read.
ELAND_MAX_MATCHES allows the maximum number of alignments
considered per read to be varied between 1 and 255.

44 CHAPTER 4
Using GERALD

Part # 1004759 Rev. A

The script pickBestPair.pl compares s_N_1_eland_extended.txt and
s_N_2_eland_extended.txt, along with their quality values, and produces
following two files of alignments, which contain pairing information:

s_N_1_saf.txt and s_N_2_saf.txt

These files are used to do quality value recalibration and generate the
following files, which contain calibrated quality values:

s_N_1_qcal.txt and s_N_2_qcal.txt

The script pickBestPair.pl is then re-run using the calibrated quality values to
obtain two more files of alignments:

s_N_1_calsaf.txt and s_N_2_calsaf.txt

Finally, these files are parsed into the following output files:
s_N_1_export.txt and s_N_2_export.txt
s_N_1_sorted.txt and s_N_2_sorted.txt

Another output file produced is s_N_anomaly.txt, which contains reads that
do not align. For some applications, reads that do not align may be of
interest, since amongst those that are due to read errors may be some that
represent genuine differences between the sequenced DNA and the
reference.

For a detailed description of the export.txt files, see Text-Based Analysis
Results on page 58 and Output File Formats on page 86.

Configuring a Paired-Read Analysis

The alignments of the two reads that provide input to the pairing process
may be varied by setting ELAND_SEED_LENGTH and
ELAND_MAX_MATCHES. Both parameters may be set lane-by-lane, but the
same values will apply to each of the two reads in a lane.

The paired-read analysis may be configured by passing options to
pickBestPair. This is done by setting a parameter PAIR_PARAMS in the
GERALD configuration file. For additional information, see GERALD
Configuration File on page 35.

PAIR_PARAMS can be specified lane-by-lane. All of the options must be
specified on a single line and space-separated, as in the following example:

8:PAIR_PARAMS --circular --min-percent-unique-pairs=30

The following table describes the parameters for ANALYSIS eland_pair.

Table 12 Parameters for ANALYSIS eland_pair

Parameter Description

--circular This causes pickBestPair to treat each chromosome as circular and not
linear, enabling it to detect valid pairings that “wrap around” when the two
alignments are mapped onto the linear representation of the chromosome.
[Optional]
--circular=my_mitochondria_file.fa

Treat alignments to my_mitochondria_file.fa as circular but other
chromosomes as linear (as you might want to do when e.g. aligning to
the whole human genome)

--circular=chromosome1:100000,chromosome2:300000
Specify chromosomes to circularize and specify the size to “wrap
around” (possibly of use when the chromosome size is uncertain)

ELAND Alignments 45

Genome Analyzer Pipeline Software v1.0 User Guide

--min-percent-unique-pairs A unique pair is defined as a read pair such that its constituent reads can
each be aligned to a unique position in the genome without needing to
make use of the fact that they are paired.
pickBestPair works in a two-pass fashion:
1. On the first pass it looks for all clusters that pass the quality filter and

have a unique alignment of each of their two reads, then uses this
information to determine the nominal insert size distribution and the
relative orientation of the two reads.

2. On a second pass this information is used to resolve repeats and other
ambiguous cases.

The number of unique pairs, expressed as a percentage of the total number
of clusters passing filters, must exceed a certain percentage. Otherwise, no
pairing is attempted and the two reads are effectively treated as two sets of
single reads.

• By default, this threshold is set to 30%.
• For low quality data, a pairing can be forced by setting --min-percent-

unique-pairs=5.
• For some applications it may be useful to switch off the pairing

completely. Set --min-percent-unique-pairs=101.

--min-percent-consistent-pairs Of the unique pairs, the vast majority should have the same orientation
with respect to each other. If they don't, it is indicative of the following
problems:

• Sample prep
• Circularization is not switched on
• A reference sequence is extremely diverged from the sample data

In such cases, no pairing is attempted and the two reads are effectively
treated as two sets of single reads.
By default, the threshold for this parameter is set to 70%.

--min-paired-read-alignment-score For each cluster, all possible pairings of alignments between the two reads
are compared. This is the score of the best one. Since we are considering
the two reads as one, both reads in a cluster get the same paired-read
alignment score.
The alignment score is nominally on a Phred scale. However, it is probably
not safe to assume the calibration is perfect. Nevertheless, it is a good
discriminator between good and bad alignments. The score must exceed
this threshold to go in the sorted.txt file.
The default value is zero.

--min-single-read-alignment-score Each read is given a single-read alignment score.
This is identical to the alignment score from an eland_extended analysis. If
a read has a zero paired-read alignment score, but a single-read alignment
score that exceeds this threshold, its alignment will still go in the sorted.txt
files.
If the alignments of the two reads can not be paired (resulting in a zero
paired score) and only one of the reads has an alignment exceeding --min-
single-read-alignment-score, the read pair is treated as a singleton. The
alignment of the shadow read is unreliable enough to be ignored.
The default value is zero.

Table 12 Parameters for ANALYSIS eland_pair (Continued)

Parameter Description

46 CHAPTER 4
Using GERALD

Part # 1004759 Rev. A

--add-shadow-to-singleton-threshold If one read has a score exceeding --min-single-read-alignment-score but
the other read either has no alignments or an alignment that does not
exceed --min-single-read-alignment-score, then the non-aligning “shadow”
read is added to the sorted.txt file with a zero alignment score, if the
combined base quality of the shadow read (not alignment quality) exceeds
this threshold.
The default value of 1,000,000 indicates this feature is switched off.

Table 12 Parameters for ANALYSIS eland_pair (Continued)

Parameter Description

Genome Analyzer Pipeline Software v1.0 User Guide 47

Chapter 5

Analysis Output

Topics
48 Introduction

48 Visual Analysis Summary

48 Results Summary

56 Cluster Intensity

57 Error Rates

58 Text-Based Analysis Results

60 Interpretation of Run Quality

60 Summary.htm

64 IVC.htm

64 All.htm and Error.htm

48 CHAPTER 5
Analysis Output

Part # 1004759 Rev. A

Introduction

The Pipeline produces various text-based files and visual output during an
analysis run. This section will help you interpret the various files that appear
in an analysis output directory.

Visual Analysis Summary

The results of an analysis are summarized as web pages that enable a large
number of graphs to be viewed as thumbnail images. This section is
intended to help you interpret the various graphs that appear in an analysis
directory.

As the numbers of tiles and graphs have increased, it has become impractical
to generate every possible graph for every tile. Therefore, the pages should
be considered as a very basic view of the data.

Results Summary For each Run Folder, a Summary.htm file is produced, which contains
comprehensive results and performance measures of your analysis run. It is
located in the GERALD folder and provides an overview of quality metrics for
a run with links to more detailed information in the form of pages of graphs.
It is intended to load in a reasonable time; depending on the number of
lanes and tiles used, the pages to which it links may take longer to display.

In the following descriptions of the tables included in Summary.htm, the
terms chip and flow cell are used interchangeably.

Chip Summary

The Chip Summary contains the instrument ID and the run folder. The Chip
ID field is a placeholder that currently has a value of “unknown.”

Chip Results Summary

This table displays a summary of chip-wide performance statistics for the run.
Both the original number of detected clusters and the number that passed
quality filtering are shown. In addition, a chip yield in kilobases is presented.
This is the sum over analyzed lanes of the product of number of quality-
filtered clusters and number of bases per cluster used for analysis, excluding
bases masked-out by a USE_BASES directive.

NOTE

Although the Summary.htm file is an HTML file, it is also a
valid XML file that is parseable by Perl's XML::Simple
module. This means that you can mine the numbers in a
Summary.htm file via a Perl script.

Visual Analysis Summary 49

Genome Analyzer Pipeline Software v1.0 User Guide

Lane Parameter Summary

Lane Parameter Summary records information about the sample in each flow
cell lane and the analysis that has been specified for it.

Sample ID—This is a placeholder field that currently has a value of
“unknown.”
Sample Target—The reference sequence against which reads from the
sample in this lane are to be aligned. Depending on the analysis mode,
this may be the name of a folder containing one or more sequence files
or the name of an individual file. The acceptable file formats also depend
on the analysis mode.
Sample Type—Contains the analysis mode for reads from this lane.

Length—The number of bases used per read (excluding any bases
masked out using USE_BASES). Where multiple reads are produced per
cluster and a distinction is maintained between them during analysis, as
in eland_pair analysis of paired-end reads, their respective lengths will be
listed.
Filter—The criterion for clusters to be selected for analysis beyond the
preliminary stages. Statistics for all detected clusters and for the subset
that pass filtering are annotated as “raw” and “PF,” respectively, in
Summary.htm.
Num Tiles—The number of tiles from the lane that are used in the
analysis.
Tiles—A hyperlink for each lane to the location (within Summary.htm) of
the statistics for individual tiles in that lane.

Lane Results Summary

This table displays basic data quality metrics for each lane. Apart from Lane
Yield, which is the total value for the lane, all the statistics are given as means
and standard deviations over the tiles used in the lane

Clusters (raw)—The number of clusters detected by the image analysis
module of the Pipeline.
Clusters (PF)—The number of detected clusters that meet the filtering
criterion listed in Lane Parameter Summary.
1st Cycle Int (PF)—The average of the four intensities (one per channel
or base type) measured at the first cycle averaged over filtered clusters.
% intensity after 20 cycles (PF)—The corresponding intensity statistic at
cycle 20 as a percentage of that at the first cycle.
% PF Clusters—The percentage of clusters passing filtering.
% Align (PF)—The percentage of filtered reads that were uniquely
aligned to the reference.
Alignment Score (PF)—The average filtered read alignment score (reads
with multiple or no alignments effectively contribute scores of 0).
% Error Rate (PF)—The percentage of called bases in aligned reads that
do not match the reference.

50 CHAPTER 5
Analysis Output

Part # 1004759 Rev. A

If eland_pair analysis has been specified for one or more lanes, then two
Lane Results Summaries are produced, one for each read. All lanes for which
analysis has been specified are represented in the Read 1 table, but only
those for which eland_pair analysis has been specified contribute statistics to
the Read 2 table.

Expanded Lane Summary

This displays more detailed quality metrics for each lane. Apart from the
phasing and prephasing information, all values are tile means for the lane.

Clusters (tile mean) (raw)—The number of clusters detected by the
image analysis module of the Pipeline.
% Phasing—The estimated (or specified) value used by the Pipeline for
the percentage of molecules in a cluster for which sequencing falls
behind the current position (cycle) within a read.
% Prephasing—The estimated (specification is not recommended) value
used by the Pipeline for the percentage of molecules in a cluster for
which sequencing jumps ahead of the current position (cycle) within a
read.
% Error Rate (raw)—The percentage of called bases in aligned reads
from all detected clusters that do not match the reference.
Equiv Perfect Clusters (raw)—The number of clusters in the ideal
situation of read base perfectly predicting reference base that would
provide the same information content (entropy of reference base given
read base and a prior assumption of equiprobable reference bases) as
calculated for all actual detected clusters.
% retained—The percentage of clusters that passed filtering.
Cycle 2-4 Av Int (PF)—The intensity averaged over cycles 2, 3, and 4 for
clusters that passed filtering.
Cycle 2-10 Av % Loss (PF)—The average percentage intensity drop per
cycle over cycles 2–10 (derived from a best fit straight line for log
intensity versus cycle number).
Cycle 10-20 Av % Loss (PF)—The average percentage intensity drop per
cycle over cycles 10–20 (derived from a best fit straight line for log
intensity versus cycle number).
% Align (PF)—The percentage of filtered reads that were uniquely
aligned to the reference.
% Error Rate (PF)—The percentage of called bases in aligned filtered
reads that do not match the reference.
Equiv Perfect Clusters (PF)—The number of clusters in the ideal
situation of read base perfectly predicting reference base that would
provide the same information content (entropy of reference base given
read base and a prior assumption of equiprobable reference bases) as
calculated for the actual clusters that passed filtering.

If eland_pair analysis has been specified for one or more lanes, then two
Expanded Lane Results Summaries are produced, one for each read. All
lanes for which analysis has been specified are represented in the Read 1
table, but only those for which eland_pair analysis has been specified
contribute statistics to the Read 2 table.

Visual Analysis Summary 51

Genome Analyzer Pipeline Software v1.0 User Guide

Per-Tile Statistics

Below the two types of lane summaries are per-tile statistics, grouped into a
table for each lane. The statistics are a subset of those already presented in
the Lane Results Summary, but are presented in these tables as averages
over the detected (raw) or filtered (PF) clusters in individual tiles.

In the event that no clusters in a tile pass filtering, all the statistics for that tile
are displayed within square brackets. Such an occurrence suggests an
exceptional situation (e.g., a bubble) within the tile. The brackets indicate the
tile has been excluded from the calculation of lane statistics and that the
values are reported only for diagnostic purposes.

Monotemplate Summary

This table appears after the per-tile summary table for lanes for which
monotemplate analysis is specified. Statistics are presented for each
monotemplate specified.

Lane—Lane number.
Template—The monotemplate sequence.
Count—The number of reads that aligned to the monotemplate.
Percent—The percentage of reads aligned to monotemplates that
aligned to the current monotemplate.
True 1st Cycle Intensity—The average intensity of the first base in reads
aligned to the monotemplate.
Av Error Rate—The average error rate over all cycles as a percentage of
called bases for reads aligned to the monotemplate.
% Perfect—The percentage of reads that are a perfect match to the
monotemplate out of those that align to it.

Pair Summary

For lanes for which eland_pair analysis was performed, there are two per-tile
summary tables (one for each read). These tables are preceded by a set of
tables collectively entitled the Pair Summary. The Pair Summary tables
provide statistics about the alignment outcomes of the two reads individually
and as a pair, the latter including relative orientation and separation (insert
size) of partner read alignments.

If the criteria for paired alignment are not met, the subset of tables reporting
paired alignment results are replaced with the statement, “Paired alignment
not performed.”

The following tables are displayed in Pair Summary:
Individual Alignments
Unique Paired Alignments
Unique Paired Alignment Effects
Non-unique Paired Alignments
Mispairing Rate
Relative Orientation Statistics
Insert Size Statistics
Insert Statistics (% of individually uniquely alignable pairs)

52 CHAPTER 5
Analysis Output

Part # 1004759 Rev. A

Individual Alignments—This table displays the frequencies of the possible
combinations of individual alignment outcomes within a pair. The following
describe the possible outcomes:

• Unique—A unique alignment
• Rescuable—Multiple alignments such that a unique paired

alignment could potentially be derived if the partner read is either
unique or similarly rescuable

• Repeat—Multiple alignments such that consideration of the partner
read will not help in selecting between them

• Not Matched—The read was not aligned
• Low Quality—The read contained too many uncalled bases to

attempt alignment

The following example table indicates that 2,497,913 clusters from read 1
have a unique best alignment in the reference, and of those clusters,
2,443,861 from read 2 have a unique alignment. (In the example tables, the
row labels pertain to read 1 and the column headings pertain to read 2.)

ELAND maintains a list of best alignments for each read. By default, this list
can contain at most 10 alignments. The maximum size of the list may be
increased (or decreased) by specifying ELAND_MAX_MATCHES in the
GERALD config file. This can be specified on a lane-by-lane basis.

Reads for which ELAND has retained a list of alignments may potentially be
“rescued” if only one of the possible alignments has the correct insert size
and orientation with respect to the other read of the cluster. These are called
“rescuable.”

Not all rescuable reads are rescued. This is dependent on the read pairing
algorithm finding a single consistent pairing of the reads among the list of
possibilities. The ability of the read pairing algorithm to do this depends on
the quality of the sample prep and the degree of structural variation between
the reference sequence being aligned to and the sample being sequenced.
Conversely, if the number of possible alignments exceeds
ELAND_MAX_MATCHES, then ELAND stores only the number of matches
found. There is no potential for picking the best alignment, so the read is
classified as a “repeat.”

If the analysis were re-run with a higher value of ELAND_MAX_MATCHES,
some reads that were classified as repeats would become rescuable, but the
sum of rescuable and repeat reads will stay the same.

Table 13 Example of Individual Alignments Table

Read 1 \ Read 2 Unique Rescuable Repeat Not Matched Low Quality Total

Unique 2443861 (93.2%) 17547 (0.7%) 395 (0.0%) 31818 (1.2%) 4292 (0.2%) 2497913 (95.3%)

Rescuable 17670 (0.7%) 54356 (2.1%) 929 (0.0%) 897 (0.0%) 118 (0.0%) 73970 (2.8%)

Repeat 405 (0.0%) 920 (0.0%) 289 (0.0%) 9 (0.0%) 2 (0.0%) 1625 (0.1%)

Not Matched 26724 (1.0%) 776 (0.0%) 10 (0.0%) 6928 (0.3%) 240 (0.0%) 34678 (1.3%)

Low Quality 138 (0.0%) 2 (0.0%) 0 (0.0%) 19 (0.0%) 14037 (0.5%) 14196 (0.5%)

Total 2488798 (94.9%) 73601 (2.8%) 1623 (0.1%) 39671 (1.5%) 18689 (0.7%) 2622382 (100.0%)

Visual Analysis Summary 53

Genome Analyzer Pipeline Software v1.0 User Guide

Unique Paired Alignments—This table breaks down the unique paired
alignments according to the alignment outcomes of their component reads,
which can only be “unique “or “rescuable.”

If at least one alignment exists for each of the two reads in a cluster, then
there are three possible outcomes:

1. Unique Paired Alignment—It is only possible to pick one alignment for
read 1 and one alignment for read 2 such that the relative orientation of
the two alignments and the distance between the alignment positions
are consistent with the sample.

2. Non-Unique Paired Alignment—There is more than one way to pick one
alignment for read 1 and one alignment for read 2 such that the relative
orientation of the two alignments and the distance between the
alignment positions are consistent with the sample.

3. Inconsistent Pair—There is no way to pick one alignment for read 1 and
one alignment for read 2 such that the relative orientation of the two
alignments and the distance between the alignment position are both
consistent with the sample.

The following example indicates that 2,474,278 clusters have one possible
alignment of each read such that the two reads have the appropriate relative
position and orientation with respect to one another. Of these clusters,
2,437,627 have only one possible alignment of each of the two reads. In
other cases, the read pairing algorithm has to pick form a list of multiple
possibilities for one or both of the two reads.

The frequencies in the Unique Paired Alignments table are often somewhat
lower than the corresponding values in the Individual Alignments table due
to the conditions required for a unique paired alignment. For example, even
when both reads are individually uniquely aligned, it is possible that their
relative positions or orientations are not compatible with the paired read
model.

Some reads are reflected in the Unique Paired Alignments table. Alignment
positions that are unexpectedly far apart, unexpectedly close together, or
even on different chromosomes, could be due to an error or represent a
genuine feature in the sample (deletion, insertion, or translocation).

Unique Paired Alignment Effects—The Unique Paired Alignment Effects
table is similar to the Unique Paired Alignments table, but focuses upon what
proportions of unique paired alignments were rescued (one or both of the
partner reads were not individually uniquely aligned).

Table 14 Example of Unique Paired Alignments Table

Read 1 \ Read 2 Unique Rescuable Total

Unique 2437627 (98.5%) 17125 (0.7%) 2454752 (99.2%)

Rescuable 17266 (0.7%) 2260 (0.1%) 19526 (0.8%)

Total 2454893 (99.2%) 19385 (0.8%) 2474278 (100.0%)

54 CHAPTER 5
Analysis Output

Part # 1004759 Rev. A

The example Individual Alignments table (page 52) shows that 17,547 reads
were such that read 1 was unique and read 2 was potentially rescuable. The
following table indicates that unique alignments were found for 17,125
(97.6%) of these reads.

Non-unique Paired Alignments—This table breaks down the non-unique
paired alignments according to the alignment outcomes of their component
reads. Paired alignment is attempted only for pairs where the individual
alignments of both partners are either unique or rescuable.

The example table below shows that a small number of clusters are non-
unique even though there is a unique alignment of one of the two reads. This
means there is more than one alignment of the other read that is consistent
with alignment of the first, which might occur if it aligns to a tandem repeat
or low-complexity region.

Mispairing Rate—Mispairing is considered to happen when one read of a
pair can be aligned (whether the alignment is unique, rescuable, or against a
repeat) and the other read can not be aligned because it is of low quality or
simply no match can be found for it in the reference.

For example, in the Individual Alignments table (page 52), you will see that of
the clusters with a read 1 that could not be aligned, 26,724 had a read 2 that
uniquely aligned, 776 had a read 2 that was rescuable, and 10 had a read 2
that was a repeat. Of the clusters with a low-quality read 1, 138 had a read 2
that uniquely aligned, 2 had a read 2 that was rescuable, and none had a
read 2 that was a repeat. The sum of these numbers is the value of Read 1
Lost in the Mispairing Rate table.

Table 15 Example of Unique Paired Alignment Effects Table

Effect \ Read Read 1 Read 2 All Reads Total

Uniqueness
Rescue (% of
rescuable)

17266 (97.7%) 17125 (97.6%) 2260 (4.2%) 36651 (40.9%)

Table 16 Example of Non-unique Paired Alignments Table

Read 1 \ Read 2 Unique Rescuable Total

Unique 0 (0.0%) 58 (0.1%) 58 (0.1%)

Rescuable 63 (0.1%) 51957 (99.8%) 52020 (99.9%)

Total 63 (0.1%) 52015 (99.9%) 52078 (100.0%)

Table 17 Example of Mispairing Rate Table

Read 1 Lost Read 2 Lost

27650 (1.1%) 37136 (1.4%)

Visual Analysis Summary 55

Genome Analyzer Pipeline Software v1.0 User Guide

Relative Orientation Statistics—The relative orientation of a pair is the
orientation of read 2 relative to the orientation of read 1, based on the
definition that the read 1 orientation is forward. The relative orientation is
defined as positive if the read 2 position is greater than the read 1 position.

These statistics are given only for those pairs in which both reads were
individually uniquely aligned, since these are the reads used to determine
the predominant relative orientation. Other orientations are considered
anomalous and are filtered out.

The symbols used in the column headings are intended as a visual reminder
of the definitions of the four possible relative orientations. In the example
below, the nominal orientation is correctly computed as the two reads
“pointing to” each other, as expected for the standard Illumina short insert
paired-read sample prep.

Insert Size Statistics—Statistics are derived from the insert sizes of those
pairs in which both reads were individually uniquely aligned and have the
predominant relative orientation. First, the median is determined. Then, a
standard deviation value is determined independently for those values below
the median and those above it. The lower and upper thresholds for
acceptable insert sizes are then defined as three of the relevant standard
deviations below and above the median, respectively.

Insert Statistics (% of individually uniquely alignable pairs)—This table
shows the number of inserts (out of those used to calculate insert size
statistics) considered acceptable in size and of those falling outside the
thresholds displayed in the Insert Size Statistics table. The percentages are
relative to the original number of pairs in which both reads were individually
uniquely aligned.

For example, the Individual Alignments table (page 52) showed that
2,443,861 clusters were such that read 1 and read 2 each had a unique
alignment. The Unique Paired Alignment table (page 53) showed that
2,437,627 clusters have a unique paired alignment. This leaves 6,234 clusters
to account for. Together, the Relative Orientation Statistics table (page 55)
and the following Insert Statistics table describe the outcome for these
clusters:

• 3,945 had a correct orientation but had an implied insert size that
was too small.

• 1,701 clusters were correctly oriented but had an implied insert size
that was too large.

Table 18 Example of Relative Orientation Statistics Table

F-: > R2 R1 > F+: > R1 R2 > R-: < R2 R1 > R+: > R1 R2 < Total

184 (0.0%) 161 (0.0%) 243 (0.0%) 2443273 (100.0%) 2443861

Table 19 Example of Insert Size Statistics Table

Median Below-median
SD

Above-median
SD

Low Thresh. High Thresh.

214 10 11 184 247

56 CHAPTER 5
Analysis Output

Part # 1004759 Rev. A

• 184, 161, and 243 clusters were oriented in the three possible ways
an orientation can be wrong.

These five figures total 6,234, as expected.

Cluster Intensity Key web pages that illustrate cluster intensity are IVC.htm and All.htm.

IVC.htm

This file contains plots that display lane averages over all tiles in the lane. The
plots displayed are All, Called, %Base_Calls, %All, and %Called.

All—This is the lane average of the data displayed in All.htm. It plots
each channel (A, C, G, T) separately as a different colored line. Means are
calculated over all clusters, regardless of base calling. If all clusters are T,
then channels A, C, and G will be zero. If all bases are present in the
sample at 25% of total and a well-balanced matrix is used for analysis,
the graph will display all channels with similar intensities. If intensities are
not similar, the results could indicate either poor cross-talk correction or
poor absolute intensity balance between each channel.
Called—This plot is similar to All, except means are calculated for each
channel using clusters that the base caller has called in that channel. If all
bases are present in the sample at 25% with pure signal (zero intensity in
the non-called channels), the Called intensity will be four times that of
All, as the intensities will only be averaged over 25% of the clusters. For
impure clusters, the difference in intensity will be less than four times that
of All.
The Called intensities are independent of base representation, so a well-
balanced matrix will display all channels with similar intensities.
%Base_Calls—The percentage of each base called as a function of cycle.
Ideally, this should be constant for a genomic sample, reflecting the base
representation of the sample. In practice, later cycles often show some
bases more than others. As the signal decays, some bases may start to
fall into the noise while other still rise above it. Matrix adjustments may
help to optimize data.
%All and %Called—Exactly the same as All and Called, but expressed as
a percentage of the total intensities. These plots make it easier to see
changes in relative intensities between channels as a function of cycle by
removing any intensity decay.

For information on interpreting results in the IVC.htm file, see Interpretation
of Run Quality on page 60.

Table 20 Example of Insert Statistics Table

Too Small Too Large Orientation and Size OK

3945 (0.2%) 1701 (0.1%) 2437627 (99.7%)

Visual Analysis Summary 57

Genome Analyzer Pipeline Software v1.0 User Guide

All.htm

This file gives a tile-by-tile representation of the mean matrix-adjusted
intensity of clusters plotted as a function of cycle. It plots each channel (A, C,
G, T) separately as a different colored line. Means are calculated over all
clusters, regardless of base calling.

If all clusters are T, channels A, C, and G will be at zero. If all bases are
present in the sample at a rate of 25% and a well-balanced matrix is used for
analysis, the graph will display all channels with similar intensities. If
intensities are not similar, the results could indicate either poor cross-talk
correction or poor absolute intensity balance among each channel.

A genome rich in GC content may not provide a balanced matrix for accurate
cross-talk correction and absolute intensity balance.

Error Rates For all analysis modes except sequence, Perfect.htm and Error.htm are
produced, which measure sequence error rates.

Perfect.htm

This graph shows the proportion of reads in a tile that have 0, 1, 2, 3, or 4
errors by the time they get to a given cycle.

Good data show a high proportion of reads with zero errors throughout the
cycles.

Error.htm

This file shows a graph of error rates for each tile on a flow cell. The red bar
shows the percentage of bases at each cycle that are wrong, as calculated
based on alignment to the reference sequence. Issues such as focus or
fluidics problems manifest themselves as spikes in the graph.

Good data is 1–1.5% or less for 25 aligned bases.
PhageAlign allows any number of errors in an alignment and provides an
accurate count of the error rate. However, it is too slow for aligning
against target references larger than 2 Mb.
ELAND is capable of aligning against large genomes, such as human, in
reasonable time. However, it allows only two errors per fragment. This
means that error rates based on ELAND alignments are underestimated.
Very poor quality data has more than two errors in the first 32 aligned
bases and is excluded from the calculations.

NOTE

For large experiments (> 200 tiles per lane), All.htm,
Perfect.htm, and Error.htm only show a subset of tiles.
However, each file contains links to the full output results.
For example, Error.htm links to FullError.htm. The full output
files may take some time to open.

58 CHAPTER 5
Analysis Output

Part # 1004759 Rev. A

Text-Based Analysis Results

The output files for each lane of a flow cell are named using the format
s_N_sequence.txt, where N represents a specific lane of the flow cell. For
paired-read analysis, there are two parallel output files, one for each read.
The files are named using the format s_N_R_sequence.txt, where N
represents a specific lane of the flow cell and R represents the read number.
The files are found in the GERALD folder of a finished analysis run.

The output files for each tile are named using the format
s_N_TTTT_realign.txt. For example, all files pertaining to tile 23 of lane 3
have names starting with s_3_0023.

The following table lists the files that contain the most meaningful data
produced from your analysis run and the GERALD analysis mode that creates
them. For descriptions of the GERALD analysis variables, see ANALYSIS
Variables on page 29.

Table 21 Text-Based Analysis Results

GERALD Analysis
Mode

Output File Description

All modes except
ANALYSIS none

s_N_sequence.txt This file contains all sequences in a single lane of a flow cell in
an exportable format. The content of this file is affected by
the following parameters: USE_BASES, QF_PARAMS,
SEQUENCE_FORMAT, QUALITY_FORMAT. For a description
of each of these parameters, see ANALYSIS Variables on
page 29.

ANALYSIS default
ANALYSIS eland

s_N_realign.txt This file contains filtered alignment information.

s_N_rescore.txt This file contains error rates for filtered data based on the
alignments in the rescore.txt files. These are used to create
the graphs in the Error.htm pages.

s_N_qreport.txt This file reports the accuracy of the base calling quality
values, making use of the _qraw.txt files.

s_N_qcalreport.txt This file reports the accuracy of the recalibrated quality
values, making use of the _qcal.txt files if they are present for
the type of analysis you have specified. The format is identical
to s_N_qreport.txt.

ANALYSIS
eland_extended

s_N_export.txt This file contains the results of alignment of all reads in the
lane. The fields are tab separated to facilitate export to
databases. This file has a line for every read, not just those
that pass purity filtering. The last field on each line is a flag
telling you whether or not the read passed the filter (1 or 0).
For file formats, see Output File Formats on page 86.

s_N_sorted.txt This output file is similar to s_N_export.txt, except it contains
only entries for reads which pass purity filtering and have a
unique alignment in the reference. These are sorted by order
of their alignment position, which is meant to facilitate the
extraction of ranges of reads for purposes of visualization or
SNP calling.

Text-Based Analysis Results 59

Genome Analyzer Pipeline Software v1.0 User Guide

For descriptions of file formats, see Output File Formats on page 86.

Numerous intermediate files are produced during an analysis run. For a
description of these files, see Intermediate Output Data Files on page 83.

ANALYSIS eland_pair s_N_1_sequence.txt,
s_N_2_sequence.txt

These parallel sets of files contain filtered sequences for each
lane.

s_N_1_export.txt,
s_N_2_export.txt

These parallel sets of files contain the results of alignment of
all reads in the lane. The fields are tab separated to facilitate
export to databases. Each file has a line for every read, not
just those that pass purity filtering. The last field on each line
is a flag telling you whether or not the read passed the filter (1
or 0). For information on file format, see Output File Formats
on page 86.

s_N_1_sorted.txt,
s_N_2_sorted.txt

These parallel sets of files are similar to s_N_1_export.txt and
sN_2_export.txt, except they contain only entries for reads
which pass purity filtering and have a unique alignment in the
reference. These are sorted by order of their alignment
position, which is meant to facilitate the extraction of ranges
of reads for purposes of visualization or SNP calling.

s_N_anomaly.txt This file contains one line for each read for which the two
halves of the read did not align with a nominal distance and
orientation from each other. This is the file to mine for
structural variation information.

Table 21 Text-Based Analysis Results (Continued)

GERALD Analysis
Mode

Output File Description

60 CHAPTER 5
Analysis Output

Part # 1004759 Rev. A

Interpretation of Run Quality

After the analysis of a run is complete, you need to interpret the data in the
report summary and various graphical outputs. This section describes a
standard, systematic way to examine your data.

The starting point is to know what a standard run of acceptable quality looks
like. This is something of a moving target and is dependent on individual
instruments, instrument configuration, genomic sample type, type of
analysis, flow cell preparation, and the current state of the art. Therefore, the
numbers shown in this section are for example only.

Summary.htm The Summary.htm file is the first file you should review after your analysis is
complete.

The following are examples of two of the tables found in Summary.htm, Lane
Results Summary and Expanded Lane Summary, each truncated to a single
lane of information. For a description of the tables found in Summary.htm,
see Results Summary on page 48.

The key parameters that you should examine are listed in the following
sections, along with conditions, possible causes for those conditions, and
suggested actions to correct the condition.

Table 22 Example of Lane Results Summary

Lane Clusters
Av 1st
Cycle Int

% intensity
after
20 cycles

% PF Clusters % Align (PF)
AV Alignment
Score (PF)

% Error
Rate (PF)

1 23621 ± 407 1926 ± 60 65.12 ± 2.48 52.55 ± 0.37 98.33 ± 0.14 2855.55 ± 90.70 6.71 ± 0.63

Table 23 Example of Expanded Lane Summary

Lane Info Phasing Info Raw Data Filtered Data

Lane Clusters
%
Phasing

% Pre-
phasing

%
Error
Rate
(Raw)

Equiv
Perfect
Clusters
(raw)

% Re-
tained

Cycle
2-4
Av
Int

Cycle
2-10
Av %
Loss

Cycle
10-20
Av %
Loss

%
Align
(PF)

%
Error
Rate
(PF)

Equiv
Perfect
Clusters
(PF)

1 23621 0.9300 0.5800 11.17 12457 52.55 1728
± 43

2.31
± 0.24

181
± 0.15

98.33 6.71 9709

Interpretation of Run Quality 61

Genome Analyzer Pipeline Software v1.0 User Guide

Clusters

This column contains the average number of clusters per tile detected in the
first cycle images. For 1 Gbases of data at 35 cycles, this value needs to be
greater than 20,000.

Average First Cycle Intensity

Generally, brighter is better, but this result is instrument and sample
dependent. Ideally, this value should be greater than 1000. For some paired-
end sample preparations, this value should be greater than 500.

Percentage of First Cycle Intensity Remaining After 20 Cycles
of Sequencing

Generally, the higher, the better. Greater than 50% is acceptable, though it
can be sample dependent.

Condition Possible Cause Suggested Action

Fewer clusters than expected: Reanalyze with new default offsets. If the
problem persists, ensure that the alignment
config file contains “SIMILARITY” filtering. The
use of “SIMILARITY” filtering will result in low
numbers passing filters.

Few bright clusters on the
flow cell

Problem with cluster formation

Blurred images Poor focus or dirty flow cell
surface

Lots of clusters visible Cluster density or size is too great
to distinguish individual objects

More clusters than expected:

Too many clusters on the flow
cell

Problem with cluster formation

Very large clusters Double counting

Condition Possible Cause

Low intensity Problem with cluster formation or poor focus

Condition Possible Cause Suggested Action

Low value A correct measure of rapid signal
decay deduced from intensity
plots

Check experiment fluidics or temperature
control

Problem with cycle 20 deduced
from intensity plots.

Check fluidics and focus for this cycle

Exceptionally high value Low first cycle intensity Check first cycle focus

62 CHAPTER 5
Analysis Output

Part # 1004759 Rev. A

Percentage of Clusters Passing Filters

To remove the least reliable data from the analysis, the raw data can be
filtered to remove any clusters that have “too much” intensity corresponding
to bases other than the called base. By default, the purity of the signal from
each cluster is examined over the first 12 cycles and CHASTITY =
Highest_Intensity / (Highest_Intensity + Next_Highest_Intensity) is calculated
for each cycle. If CHASTITY > 0.6 for all 12 cycles, then the cluster passes the
filters. Both CHASTITY> 0.6 and 12 cycles are essentially arbitrary, and are a
compromise arrived at to remove most of the error prone data without
throwing away too much of the good data.

The higher the value, the better. Ideally, a value of > 70% good, but this
value is very dependent on cluster density. When there is above 20,000
clusters per tile, the percentage starts fall, since the major cause of an impure
signal in the early cycles is the presence of another cluster within a few
micrometers.

Percentage of Clusters Passing Filters that Align Uniquely to
the Reference Genome

Optimal value depends on the genome sequenced and the read-length; the
higher (up to 100% max), the better. For example, for 30-mers and human
genome, the optimum is less than 80%.

This result is genome specific and dependent on the completeness of the
reference. A failure to align could be due to repeat or missing regions, or due
to indels where sample and reference do not match.

Condition Possible Cause Suggested Action

Very few clusters passing filter Poor flow cell, perhaps unblocked
DNA
Faint clusters
Out of focus
Poor matrix
A fluidics or sequencing failure
Bubbles in individual tiles
Too many clusters
Large clusters
High phasing or prephasing

Some of the causes may be at a single cycle. If
the problem is isolated to these early cycles, it is
possible that this filtering throws away very good
data.
Base calling errors may be limited to effected
cycles, and as early cycles are fairly resistant to
minor focus and fluidics problems, even the
number of errors may be few. The filtering can
always be set manually to some other values.
Check before assuming all the data are poor.

Condition Possible Cause Suggested Action

Much lower than expected
when using ELAND

Fluidics or instrument problem Look for an intensity dip in IVC plots. If there is a
problem and it occurs after a sufficiently useful
read-length, re-run ELAND analysis using only
the “good” cycles before the instrument
problem.

Contamination from other genetic
material resulting in an inability to
align data

Align a few sample tiles with PhageAlign.
Genomic contamination will show as early cycle
error rates. If error rates remain fairly constant
with cycle, then the “correct” genome has
probably sequenced correctly. Non smooth
error rate plots or IVC plots indicate the
presence of specific tags or sequences.

Interpretation of Run Quality 63

Genome Analyzer Pipeline Software v1.0 User Guide

Percentage Error Rate of Clusters Passing Filters

This value should be as low as possible, but it is very dependent on read-
length. At 32 cycles, the error rate should be around 2%. Depending on the
quality of the data, it will tend to rise at this point. If there is a sudden rise
beyond cycle 32, then it is likely that ELAND has effectively filtered out many
clusters with more than two errors, thus suppressing the true error rate up to
this point. The percentage aligning will also be low.

With PhageAlign analysis of control samples, error rates for 25 cycles should
be < 1.5%.

Percentage of Phasing and Prephasing

Ideally, these values should be as low as possible. Satisfactory results can be
obtained with up to 1% for each. Preferably, they should be closer to 0.5%.

Standard Deviations

Many values have standard deviations associated with them. This can be the
first indication as to the uniformity of the flow cell. If standard deviations are
high, then it indicates variability from tile to tile with a lane.

After reviewing the tables in Summary.htm, examine the thumbnails, and the
output files IVC.htm, All.htm, and Error.htm.

Condition Possible Cause Suggested Action

High phasing or prephasing Reagent issue (reagents have
deteriorated)
Fluidics

Check for leaks or bubbles in images or early
cycle discrepancies in intensity plots.

Poor flow cell Poor blocking can be evident as intensity in all
channels from cycle 1.

Condition Possible Cause Suggested Action

High standard deviations Check poor tiles for:
• Bubbles
• Focus
• Dirty flow cell surface

Look at the tile-by-tile statistics that appear
below the flow cell-wide summary.

64 CHAPTER 5
Analysis Output

Part # 1004759 Rev. A

IVC.htm For a detailed description of the plots found in the IVC.htm file, see IVC.htm
on page 56.

All.htm and
Error.htm

The results in both files should show consistency from tile to tile down a lane
and from lane to lane, if the results are from the same sample.

Condition Possible Cause

Intensity curves are not smooth Cycle to cycle focus or fluidics problems

Called intensities are not equal
(“% Called” may be +/- 5% out
without major problems)

Poor fluidics or poorly blocked flow cell
If from cycle 1, initial matrix estimate may also
be in error

Condition Possible Cause

Tile variability Bubbles
Rapid focus fluctuations
Dirty flow cell surface

Rising error rates
(Rates will always rise eventually at
high read-lengths)

Low intensity at start
High decay rate
High phasing or prephasing

High, but constant error rates from
cycle 1

Genomic contamination

Genome Analyzer Pipeline Software v1.0 User Guide 65

Chapter 6

Advanced Pipeline Usage

Topics
66 Introduction

66 Running Bustard as a Standalone Program

66 Assigning a Control Lane

67 Running GERALD as a Standalone Program

67 Additional “Make” Options

68 Running ELAND as a Standalone Program

69 Compiling ELAND

69 Command Line Syntax

66 CHAPTER 6
Advanced Pipeline Usage

Part # 1004759 Rev. A

Introduction

Bustard, GERALD, and ELAND may be run as standalone programs. This
allows you to rerun your analysis using different parameter settings without
running the rest of the Pipeline. You can rerun the base caller on a different
subset of intensity files, perform alignments on the same base-called
sequences, or rerun sequences against another genome.

Running Bustard as a Standalone Program

You can invoke the base calling script repeatedly without rerunning the
image analysis. This lets you run the base caller on a different subset of
cycles, tiles, and lanes with different parameter settings. The run is set up by
a separate script called bustard.py.

The following example shows the various options you can specify with the
base calling script:

/path/Pipeline/Goat/bustard.py
[--cycles=1-25|auto] [--tiles=s_1,s_2_0003,...]
[--matrix=mymatrix.txt|auto|auto<n>]
[--phasing=0.01|auto|auto<n>] [--prephasing=0.01]
[--make]
[--GERALD=/path/config.txt] [--control-lane=<lane>]
<Firecrest directory>

For example, the following command calls the base calling script and points
to the image analysis directory:

/path/Pipeline/Goat/bustard.py
/data/070813_ILMN-1_0217_FC1234/Data/C1-
27_Firecrest1.9.0_23-08-2007-user

This will not generate any makefiles and directories unless the “make” option
has been specified.

Assigning a Control
Lane

If you need to assign a control lane for more accurate matrix and phasing
estimation, run base calling using the bustard.py script and use control-lane
as an argument.

Pipeline/Goat/bustard.py --control-lane=4 --make /
data/070813_ILMN-1_0217_FC1234/Data/C1-
26_Firecrest*

Change to the newly generated Bustard folder and type the “make all”
command.

make all

Running GERALD as a Standalone Program 67

Genome Analyzer Pipeline Software v1.0 User Guide

Running GERALD as a Standalone Program

You can run an analysis using GERALD without the rest of the Pipeline if you
want to perform alignments with different parameters on the same base-
called sequences.

GERALD uses a text-based configuration file containing all parameters
required for alignment, visualization, and filtering. These parameters are the
type of analysis to perform, which bases to used for alignment, and the
reference files for a sequence alignment. The GERALD.pl script is used to
generate the GERALD makefile. The makefile is executed using the “make”
utility.

A typical invocation would be as follows:
Pipeline/Gerald/GERALD.pl gerald_config.txt

--EXPT_DIR path_to_bustard_folder --FORCE

The standard way to run GERALD is to set the parameters in a configuration
file, create a makefile, and start the analysis with the “make” command.

1. Edit the config.txt file as described in GERALD Configuration File on
page 35.

2. Enter the following command to create a makefile for sequence
alignment. To generate a makefile in GERALD, use FORCE instead of
“make.”
GERALD.pl config.txt --FORCE

3. Change to the newly created GERALD folder under the
“path_to_bustard_folder.” Type the “make” command for basic analysis.
You may prefer to use the parallelization option as follows:
make -j 3 all

The extent of the parallelization depends on the setup of your computer or
computing cluster. For a description of parallellization, see Using
Parallelization on page 93.

For more information on GERALD, see Using GERALD on page 27.

Additional “Make”
Options

You may perform a partial build of your analysis. This feature may be useful
for a sneak preview of your results, after which a full analysis may be built as
described above. For example, to build all files for tile 12 of lane 3, use the
following “make” option:

make TILE=s_3_0012

You may specify specific tiles to perform a partial build of your analysis. The
following example will build tiles 0005, 0010, 0015, 0020, and 0025 from
lanes 3 and 6:

make TILE=s_[36]_00[0-2][05]

This example specifies any tile for which the last digit is 0 or 5, the previous
digit is 0, 1, or 2, and the previous two positions are 00.

68 CHAPTER 6
Advanced Pipeline Usage

Part # 1004759 Rev. A

Running ELAND as a Standalone Program

You can run ELAND without the rest of the Pipeline as a post-analysis step.
ELAND can be run as a standalone program for the following reasons:

To test the effect of different filter parameters
To test alignment targets
To test applications that read export files

The eland_extended and eland_pair analysis modes introduced in Pipeline
version 0.3 share a common export file format. The intention of this file is to
combine all the important information for a lane into one file (or two files in
the case of a paired-read run) with the following results:

Bring in the base quality value information.
Use the base quality values to pick the best alignment.
Give a quality score to the alignment (generated by running several
scripts to post-process the raw ELAND output).

To run ELAND as a standalone program, use the script Pipeline/Eland/
ELAND_standalone.pl.

./Pipeline/Eland/ELAND_standalone.pl -if read1.fastq -
if read2.fastq -it fastq

-eg /lustre/data01/Mondas_software/Genomes/
E_coli_ELAND

Table 24 Options for ELAND_standalone.pl

Option Short Form Description

--input-file -if Specify at least one file for single-reads and two files for paired-reads

--input-type -it Type of input file (fastq, fasta, or export)

--read-length -rl This value will be determined from the input type, if not specified

--seed-length -sl Length of read substring (seed) used for ELAND alignment

--eland-genome -eg Full path of a squashed genome directory

--output-prefix -op Produces a set of output files with a prefix of this value (default value is
“reanalysis”)

--pipeline-dir -pd Path of the Pipeline installation (by default it is the same directory
where the executable is found)

--pair-params -pp Indicates paired-read analysis parameters to pass to pickBestPair
Multiple arguments must be contained in quotation marks
Defaults to --circular (treats all chromosomes as circular

NOTE
For paired-read analysis, both reads must share the same
input-type, read-length, and seed-length.

Running ELAND as a Standalone Program 69

Genome Analyzer Pipeline Software v1.0 User Guide

Running ELAND as a standalone program does not perform all of the various
steps that are included during a GERALD run. For example:

Quality value recalibration
Extension of alignments beyond 32 bases
Removal of sequences that fail signal purity filtering

If you require any or all of the above, it is best to create a modified config file
to align to a different squashed genome, and rerun GERALD. For more
information, see GERALD Configuration File on page 35.

Compiling ELAND ELAND is compiled automatically as part of the Pipeline installation as
described in Installation Prerequisites on page 75.

You can manually compile ELAND from the Pipeline/Eland directory using
the “make” command. This compiles ELAND without compiling the rest of
the Pipeline.

make -e eland

Command Line
Syntax

Use the following command line syntax to run ELAND as a standalone
program:

eland_executable queryFile squashedGenomeDir
[output_file].txt

[--multi[=N0[,N1,N2]] [repeatFile]

queryFile.txt

queryFile.txt is a file of query sequences. This must be either a multi-entry
fasta format file or a one-sequence-per-line ASCII file. The length of each
sequence must exceed the read length specified at compilation. Unspecified
bases in the reads must be denoted by an “N.” IUPAC ambiguity codes are
not handled.

squashedGenomeDir

squashedGenomeDir is the path to the directory of squashed genome files.
For more information, see Preparing the Reference Genome on page 38.

[output_file].txt

The ELAND output file contains the initial output of the ELAND alignment
program with one line of output per sequence. The name of the output file
depends on the analysis you are running.

ANALYSIS eland produces an output file named s_N_eland_results.txt.
ANALYSIS eland_extended and ANALYSIS eland_pair are run with the
--multi option, and produce an output file named s_N_eland_multi.txt.

For an explanation of intermediate output files, see Intermediate Output
Data Files on page 83.

For a description of the output file format, see Table 29 on page 87.

70 CHAPTER 6
Advanced Pipeline Usage

Part # 1004759 Rev. A

--multi

If --multi is specified, ELAND will store and display multiple (10 by default)
matches for each read.

--multi=20,40,80 will display at most 20 exact matches, 40 single-error
matches, and 80 2-error matches.
--multi=20 will display at most 20 matches of any number of errors.

For a description of output file formats using the multi option, see Table 29
on page 87.

repeatFile.txt

You may want to specify a set of words that you know are highly repetitive in
your target files at your read length of interest. You can then tell ELAND to
ignore them, which greatly increases the speed of whole-human-genome
alignments. There is no automatic way of generating a repeat file, but with a
bit of Perl/shell scripting, it is straightforward to extract a list of repeats from
the output of a few ELAND runs to improve the speed of future runs.

You can run the basic test harness script ELAND_test.pl from the ELAND
directory to verify correct operation.

Genome Analyzer Pipeline Software v1.0 User Guide 71

Appendix A

System Requirements and
Software Installation

Topics
72 Introduction

72 System Requirements

72 Network Infrastructure

73 Analysis Computer

75 Installation Prerequisites

75 Setting Up Email Reporting

77 Installing the Pipeline Software

77 Compiling on Other Platforms

77 Directory Setup

72 APPENDIX A
System Requirements and Software Installation

Part # 1004759 Rev. A

Introduction

This section describes the Pipeline system requirements and the software
installation instructions. It also describes how to set up your instrument
directory.

System Requirements

Images are acquired and stored on the Genome Analyzer. They must be
transferred to an external computer to be analyzed by the analysis software,
which handles image processing, base calling, and sequence alignment.
Based on an eight-lane flow cell with three columns and 110 rows per lane,
each sequencing run generates approximately 1 TB of data during a full 2–3
day run. Paired-end runs generate approximately 2 TB of data over a 5–6 day
run. However, about 70% of this is TIFF image data that can potentially be
stored on tape after an analysis run is complete.

Depending on the application, single experiments run from 18–50 cycles.
Paired-end experiments can double the number of cycles while gene
expression experiments may use only 18-cycle protocols. Estimating required
storage for individual runs depends on your application. The following table
summarizes data volumes per experiment.

Network
Infrastructure

These large data volumes mean that you will need:

1. A high-throughput ethernet connection (1 Gigabit or more
recommended) or other data transfer mechanism.

2. A suitably large holding area for the images and analysis output (1 TB per
run). As there will almost certainly some overlap between copying,
analysis, possible reanalysis, 2–3 TB is an absolute minimum.

3. You need to consider which parts of the data you want to backup and
what infrastructure you want to provide for the backup. If you want to
keep image data, then half a terabyte per run is required. The Pipeline
provides the option to perform loss-less data compression.

Table 25 Data Volumes Per Experiment

Cycles per Run Run Time (hours) Raw Data (TB) Results Data (TB)

18 42.0 0.360 0.270

26 60.7 0.520 0.390

36 84.0 0.720 0.540

50 116.7 1.000 0.750

75 175.0 1.500 1.125

100 233.3 2.000 1.500

System Requirements 73

Genome Analyzer Pipeline Software v1.0 User Guide

Storage Configurations

You can configure your analysis server as either local storage or external
network storage.

Local server storage can be internal to the server, or Direct Attached
Storage (DAS), which is a separate chassis attached to the server.
• Internal—Simple but not scalable. Results data must be moved off

to network storage at some point to make room for subsequent runs.
• DAS—External chassis that is scalable since more than one DAS can

be connected to the server. The server is an application server
running the Pipeline and a file server providing access to results and
receiving incoming raw data files.

External network storage is either Network Attached Storage (NAS) or
Storage Area Network (SAN). NAS and SAN are functionally equivalent,
but SAN is larger, with higher performance, more connections, and more
management options.
• NAS—External chassis connected via an Ethernet to the server,

instrument PC, and other clients on the network. NAS devices are
scalable and highly optimized.

• SAN—The most scalable with the highest performance. They have a
very high bandwidth and support many simultaneous clients, but are
complex to manage and significantly more expensive.

Server Configurations

You can use either a single multi-processor, multi-core computer running
Linux, or a cluster of Linux servers with a head node. The Pipeline can take
advantage of clustered and multi-processing servers.

Single multi-processor, multi-core server—Simple but not scalable. It
can only analyze data from one Genome Analyzer, or two depending on
power and your turn-around requirements.
Linux Cluster—Highly scalable and capable of running multiple jobs
simultaneously. It requires one server as a management node and a
minimum number of computational notes to be as efficient as a
standalone server. By adding computational nodes, the cluster can
service more instruments.

Analysis
Computer

The Pipeline may run on any Unix variant, if all of the prerequisites described
in this section are met. However, Illumina does not support any platform
other than Linux.

Illumina recommends and fully supports the following hardware
configuration.

High performance DL580 G4 server from Hewlett Packard
This system comes configured with Red Hat Linux and the full installation
of the Genome Analyzer Pipeline Software.
Single 4-way, dual-core server with Xeon 7140 class processors
32 GB fault-tolerant RAM
This is enough RAM to perform analysis tasks and file server tasks simul-
taneously. It uses high speed fault-tolerant hard drives for the operating
system and applications.

74 APPENDIX A
System Requirements and Software Installation

Part # 1004759 Rev. A

HP MSA20 Direct Attached Storage (DAS) unit
This capacity is intended to hold information from three runs, as follows:
• Last Processed Run—The results data from the last analyzed run are

copied off to another storage server, where the run can be reviewed
by the investigators and their staff. The raw image data is deleted.

• Currently Processed Run—The raw image data from the last
completed instrument run are loaded and the Pipeline is performing
analysis on that run.

• Next Run for Processing—The Genome Analyzer is copying the raw
data from the current run up to the server.

As data volumes increase, the storage capacity can be scaled up by add-
ing additional MSA20 DAS units.

On this type of hardware, you can expect to perform the image analysis and
base calling for a full run in approximately one day. Sequence alignment
takes additional time depending on which alignment program you are
running; somewhere between a few hours (using our fast short-read whole-
genome alignment program ELAND) and days (using more traditional
alignment programs).

Pipeline parallelization is built around the multi-processor facilities of the
“make” utility and scales very well to beyond eight nodes. Substantial speed
increases are expected for parallelization across several hundred CPUs. For a
detailed description, see Using Parallelization on page 93.

Installation Prerequisites 75

Genome Analyzer Pipeline Software v1.0 User Guide

Installation Prerequisites

The following software is required to run the Genome Analyzer Pipeline
Software:

Perl 5.8 or later; install the XML::Simple module and its dependencies
(http://www.cpan.org)
Python 2.3 or later
GNU make 3.78 or later
(qmake from Sun Grid Engine (SGE) 6.1 has been reported to work)
gnuplot 3.7 or later (4.0 is recommended)
ImageMagick 5.4.7 or later
Ghostscript
SMTP server (for optional automated email run reports)
zlib
bzlib

For a compilation from source, the following additional software is required:
gcc (including g++)
Optimized FFT library
(Only one of the following three FFT libraries are required, not all three)
• FFTW 3.0.1 or greater (3.1 is recommended); GPLed. To download

files, see http://www.fftw.org.
The single-precision version of FFTW is required (libfftw3f.a). This is
produced by specifying the --enable-single option to the ./configure
procedure of FFTW as follows:

./configure --enable-single
make
make install

• Intel Maths Kernel Library
• IBM ESSL

If you are running the Linux distribution Red Hat, the required dependencies
listed above are satisfied by the Red Hat packages perl-*, python-*, make,
autoconf, gnuplot, ImageMagick, ghostscript, zlib, zlib-devel, bzip2, bzip2-
devel, libtiff-devel and gcc-* as well as their respective prerequisites. The Perl
XML::Simple module and fftw3 need to be downloaded separately and
installed from source.

Setting Up Email
Reporting

The script Gerald/runReport.pl is called at the end of a run and sends you an
email when a run successfully completes.

To use email notification, set up an SMTP server and set the following
parameters in the GERALD configuration file. For additional information, see
GERALD Configuration File on page 35.

1. Enter a space-separated list of the email addresses that should receive
the run completion notification.

EMAIL_LIST your.name@domain.com that.name@domain.com

76 APPENDIX A
System Requirements and Software Installation

Part # 1004759 Rev. A

2. Indicate the path to the GERALD folder. The software assumes it can
create a valid URL from the GERALD folder path by omitting the first two
path elements and prepending WEB_DIR_ROOT.

WEB_DIR_ROOT http://server/SHARE
For example, if the path is /mnt/yourDrive/folder/folder/GERALD and
WEB_DIR_ROOT is http://server/SHARE, the software will write the links
as http://server/SHARE/folder/folder/GERALD/File.htm.

3. Identify your domain. Your SMTP server may refuse to accept emails from
or send emails to addresses that do not end in @yourdomain.com.

EMAIL_DOMAIN yourdomain.com

4. Identify your IP address.

EMAIL_SERVER yourserver:2525
where yourserver is the name or IP address of a mail server that will
accept SMTP email requests from you and 2525 is the port number of the
SMTP service on that server.
Generally this will be 25. This is the default value if no port number is
specified. The utility nmap, if installed, may help you identify which port
on a server is hosting an SMTP service.

5. Test your email reporting by entering the following from the machine
where you are running GERALD:

telnet yourserver yourPortNumber
If you don't get a friendly message, then email reporting will not work.
You can run runReport.pl directly in test mode by entering:

/runReport.pl --test yourserver:25 yourdomain.com
anything your.name@yourdomain.com

You should receive a test email. If you do not, the transcript it generates
should identify the problem.

NOTE
The optional email reporting feature depends on how your
SMTP servers are set up locally. Email reporting is not
required to run the Pipeline to a successful completion.

Installing the Pipeline Software 77

Genome Analyzer Pipeline Software v1.0 User Guide

Installing the Pipeline Software

To install the Pipeline, you obtain the source code and then compile the
software. Compiling the software will first build all C++ code, and then copy
the relevant executables into the directories GOAT and GERALD, which
contain the scripts and makefile generators.

1. Go to the location where you want to install the Pipeline and type the
following:

tar xvfz GAPipeline-version.tar.gz
where version is of the archive you have. You may have to adjust the path to the
archive.

2. Change to the Pipeline directory and type:

make

make install

Compiling on
Other Platforms

Compiling the Pipeline with the current makefiles works on all platforms,
including many 32-bit and 64-bit Linux versions and Solaris. However, if your
compilation does not succeed on a less commonly used platform (possibly
64-bit architectures or platforms other than Linux), you may have to make
manual changes to the makefiles. Compilation problems, may require you to
adapt the platform-specific gcc-compiler flags. Because of the optimized FFT
libraries, the Firecrest makefile is particularly likely to be sensitive to
platform-specific peculiarities.

Illumina does not support any platform other than Linux.

Directory Setup Create a directory called Instruments/<instrument_name> for each Genome
Analyzer in the same directory as the Run Folder, where <instrument_name>
is the hostname of the computer that is attached to the Genome Analyzer.

For example, the directory for the Run Folder /data/070813_ILMN-
1_0217_FC1234 would be called /data/Instruments/ILMN-1/.

If this directory exists, the Pipeline will place a file called default_offsets.txt
into this directory. The Pipeline automatically keeps this file up-to-date. For
information on default_offsets.txt, see Image Offsets on page 13.

Use the environment variable INSTRUMENT_DIR, to override the default
location of the Instruments directory:

export INSTRUMENT_DIR=/home/user/Instruments

NOTE

If you want to use the Intel Math Kernel Library as an
FFT backend, compile the image analysis module
Firecrest separately from the rest of the project.
Specify the additional variable MKL to make, as in
“make MKL=true” and set the MKL-specific paths in
the makefile to the appropriate locations on your
system.

78 APPENDIX A
System Requirements and Software Installation

Part # 1004759 Rev. A

If no instrument directory exists, the Pipeline will create one for you. If no
default_offsets.txt file exists, the Pipeline will create one with offset values
equal to zero.

Genome Analyzer Pipeline Software v1.0 User Guide 79

Appendix B

Output File Descriptions

Topics
80 Introduction

80 Output File Types

81 Intensity Files

81 Sequence Files

82 Quality Score Files

82 Efficiency

83 Intermediate Output Data Files

86 Output File Formats

89 Parameters File Format

80 APPENDIX B
Output File Descriptions

Part # 1004759 Rev. A

Introduction

This section describes the file types and file formats of the intermediate data
output produced during an analysis run.

Output File Types

Figure 5 Run Folder Structure and Output File Types

Firecrest
Image Analysis

Bustard
Base Calling

_int.txt
files

_seq.txt
files

GERALD

alignment
files

_sig.txt
files

_prb.txt
files

visualization
files

filtering
results

_nse.txt
files

Output File Types 81

Genome Analyzer Pipeline Software v1.0 User Guide

Intensity Files The prefix of the intensity filenames follows the prefix of the image filenames,
but the tile position is padded to four digits. For example, s_1_0006_int.txt is
the intensity file corresponding to the image files s_1_6_a.tif, s_1_6_c.tif, and
so on.

Each intensity file has a set of data for remapped clusters on each line. Each
row corresponds to the data from one cluster and each column is delimited
by a space. Each row has a lane index, and a tile index in the first column,
with the X offset and Y offset of the cluster in the second and third columns
(all coordinates indexed from zero). These fields are tab-delimited. These
values should be enough to uniquely identify any cluster for any run.

Following the coordinate fields are the data fields. The first value in a data
field is the raw intensity for base A, the second is the raw intensity for base C,
then G, and then T. These four values are separated by spaces and are
followed by a tab to mark the beginning of the next four values. The next
four values represent the corresponding intensities in the de-block scan (if a
de-block scan has been performed), and then four intensities for the next
cycle.

The number of fields should equal four coordinates plus four bases times the
number of cycles of processed data, even if clusters don't yield data at the
end of a set of cycles or part way through. In this case, the fields contain 0.0
and preserve delimiters.

The following is a sample line from an intensity file (_int.txt):
<Channel><TAB><Tile><TAB><X><TAB><Y><TAB><A int 1st

cycle> <C int> <G int> <T int><TAB>\
<A int 2nd cycle>... <LF>

A second set of files with an identical layout, stores the estimates of the noise
on the intensity estimates. These files end in _nse.txt.

Sequence Files The data found in the sequence files (_seq.txt) located in the Bustard folder
are raw sequences in the following condition:

Trimming of any primer bases and splitting of a paired-read into two
reads as specified by USE_BASES has not been applied.
Signal purity filtering of low quality data has not been applied.
There is one file per tile, resulting in over 1000 files in total.

Use the sequence.txt files in the GERALD folder for which all the above
points have been applied.

The base calls are kept in one file per tile for the concomitant base calls, and
use the extension _seq.txt. For a given intensity file, following base calling,
we have a sequence file of the same name. For example, from an intensity
file called s_1_0001_int.txt you would get a base-called file named
s_1_0001_seq.txt.

Each sequence file has a sequence per row similar to the intensity files. Each
row uses the same format as the intensity file, with the <lane>,<tile>,<X-
offset>,<Y-offset> providing a unique key and a global co-ordinate for the
sequence, and relating sequences to a cluster on the images. Following this
format, the output is a string with one character for each base call in tab-
delimited fields.

Another file holds the base caller confidence score that follows the format:
<channel><TAB><tile><TAB><X><TAB><Y><TAB><sequence><LF>

82 APPENDIX B
Output File Descriptions

Part # 1004759 Rev. A

Quality Score
Files

Each intensity and sequence file has an associated file containing the quality
scores for the base calls. For example, the quality file for the sequence file
s_1_0002_seq.txt is called s_1_0002_prb.txt. There are four quality scores
corresponding to the four bases in the order of A, C, G, T, for each base call
in the sequence file. These fields are separated by a space. Each set of four
scores for one base call is separated from the next set by a tab.

For following example might be the scores for a sequence AGT:
30 -30 -30 -30<TAB>-22 20 -27 -30<TAB>-17 17 -30 -30

The scores are defined as Q=-10*log10(p/(1-p)), where p is the probability of
a base call corresponding to the base in question. By definition, the four
values of p add up to 1.

Quality scores are essential for almost any genetic application to be able to
tell good bases from bad bases. For example, ELAND can use quality scores
to break degenerate alignments, and quality scores are essential for calling
SNPs.

Efficiency To allow efficient handling by any software packages, there is one intensity
and sequence file per tile. However, a single file can easily be created by
simple concatenation of the individual files.

Intermediate Output Data Files 83

Genome Analyzer Pipeline Software v1.0 User Guide

Intermediate Output Data Files

Intermediate output files are found in the GERALD folder and contain data
used to build the more meaningful results files described in Analysis Output
on page 47.

The files are named using one of the following formats:
s_N_TTTT_name.txt, where N is the lane number, T is the tile number
s_N_name.txt, where N is the lane number
s_N_R_name.txt, where N is the lane number, R is the read number

Table 26 Intermediate Output File Descriptions

Output File GERALD Analysis Mode Description

s_N_TTTT_align.txt ANALYSIS default
ANALYSIS eland
ANALYSIS monotemplate
ANALYSIS eland_tag

Contains unfiltered first-pass alignments for a given tile.

s_N_TTTT_score.txt ANALYSIS default
ANALYSIS eland (if
contaminant filtering is
switched on)

Contains error rate information from first pass
alignments. Error rate information is contained in text
form and indicates potential contaminants. If
CONTAM_FILE is specified, sequences with a negative
entry in the s_N_cdiff.txt file, such as likely contaminants,
are ignored.

s_N_TTTT_prealign.txt ANALYSIS default
ANALYSIS eland

Contains the realignment of all sequences against the
data, using the error rate information in
s_N_TTTT_score.txt to refine the alignment by re-
weighting each base at each cycle according to its
confidence.
If the lane in question were analyzed using ELAND, this
file is just a copy of s_N_align.txt, because ELAND does
not have the feature to weight the contribution of bases
in an alignment.

s_N_TTTT_realign.txt ANALYSIS default
ANALYSIS eland

Consists of alignments in s_N_TTTT_prealign.txt, filtered
to exclude alignments for those clusters that do not pass
the quality criterion QF_PARAMS when applied to
s_N_TTTT_qhg.txt.
Even if contaminant filtering is switched on, the
alignments here will not have been contaminant filtered.
Use the s_N_TTTT_crediff.txt file and qualityFilter.pl
script to retain non-contaminants only.
cat s_N_TTTT_realign.txt | qualityFilter.pl '($F[0]>0)'
s_N_TTTT_crediff.txt
Replace “>” with “<=” to retain contaminants only.

s_N_TTTT_rescore.txt ANALYSIS default
ANALYSIS eland

Contains the improved estimate of the error rate based
on s_N_TTTT_realign.txt. If CONTAM_FILE is specified,
the calculation ignores sequences with a negative entry
in the s_N_TTTT_crediff.txt file, such as likely
contaminants.

s_N_TTTT_rescore.png ANALYSIS default
ANALYSIS eland

This generated image is a viewable error rate graph
drawn from the data in s_N_TTTT_rescore.txt. This image
is used as a thumbnail in Error.htm as described in Visual
Analysis Summary on page 48.

84 APPENDIX B
Output File Descriptions

Part # 1004759 Rev. A

s_N_TTTT_qalign.txt ANALYSIS default
ANALYSIS monotemplate

Contains the alignments using base quality values to
weight the bases. This file is not produced if the
alignments for the lane in question were generated from
an ELAND analysis, as ELAND does not have the feature
to weight bases by their quality values.

s_N_TTTT_qraw.txt ANALYSIS default
ANALYSIS eland
ANALYSIS monotemplate

This file collates the scores found in the file s_N_prb.txt,
which contains four scores for each base. The highest of
these scores is the score pertaining to the called base.
If ANALYSIS --symbolic is specified (default), the quality
scores are encoded as ASCII characters.
If ANALYSIS --numeric is specified, these are encoded as
space separated integers.
In both cases the file will only contains values for cycles
that the Pipeline has been asked to include, such as
those with a “Y” in the corresponding USE_BASES string.
For detailed descriptions of USE_BASES, see
USE_BASES Option on page 31.

s_N_qraw.txt ANALYSIS eland_extended

s_N_R_qraw.txt ANALYSIS eland_pair

s_N_TTTT_qcal.txt ANALYSIS default
ANALYSIS eland
ANALYSIS monotemplate

Contains quality values for each base, recalibrated using
a calibration table derived from the alignments.

s_N_qcal.txt ANALYSIS eland_extended

s_N_R_qcal.txt ANALYSIS eland_pair

s_N_eland_query.txt ANALYSIS eland_extended Contains all reads for lane N and are concatenated into a
single fasta file to use as an ELAND query.

s_N_R_eland_query.txt ANALYSIS eland_pair

s_N_eland_result.txt ANALYSIS eland_extended Contains the initial output of the ELAND alignment
program run in the “standard” single-match mode.

s_N_R_eland_result.txt ANALYSIS eland_pair

s_N_eland_multi.txt ANALYSIS eland_extended Contains the initial output of the ELAND alignment
program run in multiple-match mode.

s_N_R_eland_multi.txt ANALYSIS eland_pair

s_N_frag.txt ANALYSIS eland_extended Contains the alignment positions (based on at most
32 bases) and does an alignment of the full read to each
position. A numeral refers to a run of matching bases,
while an upper case base or N refers to a base in the
reference that differs from the read.

s_N_eland_extended.txt ANALYSIS eland_extended Contains the corrected alignment positions and the full
alignment descriptions for >32 base reads. This file is not
purity filtered.s_N_R_eland_extended.txt ANALYSIS eland_pair

s_N_saf.txt ANALYSIS eland_extended Short Alignment Format (SAF) aims to describe the best
alignment for each read. The raw quality values are used
to pick the best alignment from the (potentially) multiple
possibilities.

s_N_R_saf.txt ANALYSIS eland_pair The software aims to pick the pair of alignments that is
most consistent with the statistical distribution of insert
sizes.

Table 26 Intermediate Output File Descriptions (Continued)

Output File GERALD Analysis Mode Description

Intermediate Output Data Files 85

Genome Analyzer Pipeline Software v1.0 User Guide

s_N_calsaf.txt ANALYSIS eland_extended These files are identical in format to s_N_saf.txt and
s_N_R_saf.txt except the calibrated quality values are
used to pick the best alignment.s_N_R_calsaf.txt ANALYSIS eland_pair

s_N_qval.txt,
s_N_qtable.txt

ANALYSIS default
ANALYSIS eland

These are intermediate files produced during the
generation of s_N_qcal.txt. Normally, they are deleted
when the analysis is completed, but may be present in an
analysis folder if the analysis was interrupted for any
reason.

Table 27 Contaminant Filtering-Specific Files

Output File GERALD Analysis Mode Description

s_N_TTTT_calign.txt ANALYSIS default
ANALYSIS eland (if
contaminant filtering is
switched on)

This file contains the first pass alignments of the sequences
in the tile against the file of contaminant sequences
specified in CONTAM_FILE. If CONTAM_FILE is not
specified, this file is not produced.

s_N_TTTT_cdiff.txt ANALYSIS default
ANALYSIS eland (if
contaminant filtering is
switched on)

This file is only produced if CONTAM_FILE is specified. It
contains the difference in alignment scores of alignment to
data versus alignment to contaminant file. If negative, the
corresponding sequence aligns better to contaminant than
to data.

s_N_TTTT_crealign.txt ANALYSIS default
ANALYSIS eland (if
contaminant filtering is
switched on)

This file is only produced if CONTAM_FILE is specified. It
contains realignments of the sequences in the tile against
the file of contaminant sequences specified in
CONTAM_FILE. The error rate information contained in
s_N_score.txt refines the alignment by re-weighting each
base at each cycle according to its confidence.

s_N_TTTT_cprediff.txt ANALYSIS default
ANALYSIS eland (if
contaminant filtering is
switched on)

This file is only produced if CONTAM_FILE is specified. It
contains differences in alignment scores of realignment to
data from s_N_prealign.txt versus realignment to
contaminant file s_N_crealign.txt. If the entry is negative,
the corresponding sequence aligns better to contaminant
than to data. This data is analogous to the data in
s_N_cdiff.txt.

s_N_TTTT_crediff.txt ANALYSIS default
ANALYSIS eland (if
contaminant filtering is
switched on)

This file is only produced if CONTAM_FILE is specified. It
contains differences in alignment scores of realignment to
data from s_N_prealign.txt versus alignment to
contaminant file s_N_crealign.txt, and is filtered to exclude
alignments for those clusters that do not pass the quality
criterion QF_PARAMS when applied to s_N_qhg.txt. This is
based on s_N_cprediff.txt, filtered to have a line-to-line
correspondence with the realignments in s_N_realign.txt.

Table 26 Intermediate Output File Descriptions (Continued)

Output File GERALD Analysis Mode Description

86 APPENDIX B
Output File Descriptions

Part # 1004759 Rev. A

Output File Formats

The sequences and base-specific quality scores are bundled by lane and
come in several configurable text formats. The currently supported formats
are fasta, fastq, and SCARF. For a description of each format, see ANALYSIS
Variables on page 29.

Quality scores are stored as either symbolic ASCII values or numeric values.
The parameters that set the configuration of the output format are described
in ANALYSIS Variables on page 29.

Table 28 Final Output File Formats

Output File Format

s_N_export.txt
s_N_R_export.txt

Not all fields are relevant to a single-read analysis.
1. Machine (Parsed from Run Folder name)
2. Run Number (Parsed from Run Folder name)
3. Lane
4. Tile
5. X Coordinate of cluster
6. Y Coordinate of cluster
7. Index string (Bland for a non-indexed run)
8. Read number (1 or 2 for paired-read analysis, blank for a single-read analysis)
9. Read
10. Quality string—In symbolic ASCII format (ASCII character code = quality value + 64)

by default (Set QUALITY_FORMAT --numeric in theGERALD config file for numeric
values)

11. Match chromosome—Name of chromosome match OR code indicating why no
match resulted

12. Match Contig—Gives the contig name if there is a match and the match
chromosome is split into contigs (Blank if no match found)

13. Match Position—Always with respect to forward strand, numbering starts at 1 (Blank
if no match found)

14. Match Strand—“F” for forward, “R” for reverse (Blank if no match found)
15. Match Descriptor—Concise description of alignment (Blank if no match found)

• A numeral denotes a run of matching bases
• A letter denotes substitution of a nucleotide:
For a 35 base read, “35” denotes an exact match and “32C2” denotes substitution
of a “C” at the 33rd position

16. Single-Read Alignment Score—Alignment score of a single-read match, or for a
paired read, alignment score of a read if it were treated as a single read (Blank if no
match found)

17. Paired-Read Alignment Score—Alignment score of a paired read and its partner,
taken as a pair (Blank for single-read analysis)

18. Partner Chromosome—Name of the chromosome if the read is paired and its partner
aligns to another chromosome (Blank for single-read analysis)

19. Partner Contig—Not blank if read is paired and its partner aligns to another
chromosome and that partner is split into contigs (Blank for single-read analysis)

20. Partner Offset—If a partner of a paired read aligns to the same chromosome and
contig, this number, added to the Match Position, gives the alignment position of the
partner (Blank for single-read analysis)

21. Partner Strand—To which strand did the partner of the paired read align? “F” for
forward, “R” for reverse (Blank if no match found, blank for single-read analysis)

22. Filtering—Did the read pass quality filtering? “Y” for yes, “N” for no

Output File Formats 87

Genome Analyzer Pipeline Software v1.0 User Guide

s_N_sequence.txt
s_N_R_sequence.txt

Filtered output
User-specified: fasta, fastq, scarf (one sequence per line, not identifier)

s_N_TTTT_realign.txt Final quality-filtered sequence alignments
Space-separated text values:
1. sequence
2. best score
3. number of hits at that score
The following columns only appear if hits equal 1 (a single, unique match)
4. target:pos
5. strand
6. target sequence
7. next best score

s_N_rescore.txt Estimate of the error rate based on s_N_TTTT_realign.txt
Tabular text format, header data included

Table 29 Intermediate Output File Formats

Output File Format

s_N_eland_results.txt
s_N_R_eland_results.txt

Unfiltered ELAND alignment output
Each line of the output file contains the following fields:
1. Sequence name (derived from file name and line number if format is not fasta)
2. Sequence
3. Type of match codes:

• NM—No match found
• QC—No matching done: QC failure (too many Ns)
• RM—No matching done: repeat masked (may be seen if repeatFile.txt was

specified)
• U0—Best match found was a unique exact match
• U1—Best match found was a unique 1-error match
• U2—Best match found was a unique 2-error match
• R0—Multiple exact matches found
• R1—Multiple 1-error matches found, no exact matches
• R2—Multiple 2-error matches found, no exact or 1-error matches

4. Number of exact matches found
5. Number of 1-error matches found
6. Number of 2-error matches found
7. The following fields are only used if a unique best match was found:
8. Genome file in which match was found
9. Position of match (bases in file are numbered starting at 1)
10. Direction of match (F=forward strand, R=reverse)
11. How N characters in read were interpreted (“.”=not applicable, “D”=Detection,

“I”=Insertion)

The following field is only used in the case of a unique inexact match:
12. Position and type of first substitution error (A numeral refers to a run of matching

bases, an upper case base or N refers to a base in the reference that differs from the
read. For example, 11A: after 11 matching bases, base 12 is A in the reference but
not in the read)

Table 28 Final Output File Formats (Continued)

Output File Format

88 APPENDIX B
Output File Descriptions

Part # 1004759 Rev. A

s_N_eland_multi.txt
s_N_R_eland_multi.txt

Each line of the output file contains the following fields:
1. Sequence name
2. Sequence
3. Either NM, QC, RM (as described above) or the following:
4. x:y:z where x, y, and z are the number of exact, single-error, and 2-error matches

found
5. Blank, if no matches found or if too many matches found, or the following:

BAC_plus_vector.fa:163022R1,170128F2,E_coli.fa:3909847R1
This says there are two matches to BAC_plus_vector.fa: one in the reverse direction
starting at position 160322 with one error, one in the forward direction starting at
position 170128 with two errors. There is also a single-error match to E_coli.fa.

s_N_TTTT_align.txt Unfiltered first-pass alignments
Each line of the output file contains the following fields:
1. Sequence
2. Best score
3. Number of hits at that score
The following columns only appear if hits equal 1 (a single, unique match)
4. Target:pos
5. Strand
6. Target sequence
7. Next best score

s_N_TTTT_prealign.txt Unfiltered second-pass alignments
Each line of the output file contains the following fields:
1. Sequence
2. Best score
3. Number of hits at that score
The following columns only appear if hits equal 1 (a single, unique match)
4. Target:pos
5. Strand
6. Target sequence
7. Next best score

Table 29 Intermediate Output File Formats (Continued)

Output File Format

Parameters File Format 89

Genome Analyzer Pipeline Software v1.0 User Guide

Parameters File Format

The top level Run Folder contains a parameters file, named <Run Folder
Name>.params, and is written in the following format:
<experiment>
<run>
...
</run>
<run>
...
</run>

</experiment>

For each restart of the instrument, a new run tag with corresponding
parameter tags is added to the parameters file. For most experiments, there
will only be one run.

The XML tags in the parameters file are self-explanatory. The following shows
an example of a parameters file:
<experiment>
<run>
<instrument>slxa-b1</instrument>

</run>
</experiment>

In the top level of the Data folder you will find the parameters file that
records any information specific to the generation of the subfolders. This
contains a tag-value list describing the cycle-image folders used to generate
each folder of intensity and sequence files.
<?xml version="1.0"?>
<ImageAnalysis>
<Run Name="C1-24_Firecrest1.9.0_30-07-2007_user">
<Cycles First="1" Last="24" Number="24" />
<ImageParameters>
<AutoOffsetFlag>1</AutoOffsetFlag>
<AutoSizeFlag>0</AutoSizeFlag>
<DataOffsetFile>/data/070813_ILMN-1_0217_FC1234/

Data/default_offsets.txt</DataOffsetFile>
<Fwhm>2.700000</Fwhm>
<InstrumentOffsetFile></InstrumentOffsetFile>
<OffsetFile>/data/070813_ILMN-1_0217_FC1234/Data/

default_offsets.txt</OffsetFile>
<Offsets X="0.000000" Y="0.000000" />
<Offsets X="0.790000" Y="-0.550000" />
<Offsets X="-0.240000" Y="-0.140000" />
<Offsets X="0.190000" Y="0.650000" />
<RemappingDistance>1.500000</RemappingDistance>
<SizeFile></SizeFile>
<Threshold>4.000000</Threshold>

</ImageParameters>
<RunParameters>
<AutoCycleFlag>0</AutoCycleFlag>
<BasecallFlag>1</BasecallFlag>
<Compression>gzip</Compression>
<CompressionSuffix>.gz</CompressionSuffix>
<Deblocked>0</Deblocked>

90 APPENDIX B
Output File Descriptions

Part # 1004759 Rev. A

<DebugFlag>0</DebugFlag>
<ImagingReads Index="1">
<FirstCycle>1</FirstCycle>
<LastCycle>24</LastCycle>
<RunFolder>/data/070813_ILMN-1_0217_FC1234</

RunFolder>
</ImagingReads>
<Instrument>ILMN-1</Instrument>
<MakeFlag>1</MakeFlag>
<MaxCycle>-1</MaxCycle>
<MinCycle>-1</MinCycle>
<Reads Index="1">
<FirstCycle>1</FirstCycle>
<LastCycle>24</LastCycle>
<RunFolder>/data/070813_ILMN-1_0217_FC1234</

RunFolder>
</Reads>
<RunFolder>/data/070813_ILMN-1_0217_FC1234</

RunFolder>
<Software Name="Firecrest" Version="1.9.0" />
<TileSelection>
<Lane Index="8">
<Sample>s</Sample>
<Tile>10</Tile>
<Tile>20</Tile>
<Tile>30</Tile>

</Lane>
</TileSelection>
<Time>
<Start>30-07-07 12:50:45 BST</Start>

</Time>
<User Name="user" />

</Run>
<Run Name="C1-24_Firecrest1.9.0_30-07-2007_user.2">
...

</Run>
</ImageAnalysis>

In each image analysis folder there is another parameters file containing the
meta-information about the base caller runs.
<?xml version="1.0"?>
<BaseCallAnalysis>
<Run Name="Bustard1.9.0_30-07-2007_user">
<BaseCallParameters>
<Matrix Path="">
<AutoFlag>1</AutoFlag>
<AutoLane>0</AutoLane>
<Cycle>2</Cycle>
<FirstCycle>1</FirstCycle>
<LastCycle>24</LastCycle>
<Read>1</Read>

</Matrix>
<MatrixElements />
<Phasing Path="">
<AutoFlag>1</AutoFlag>
<AutoLane>0</AutoLane>
<Cycle>1</Cycle>

Parameters File Format 91

Genome Analyzer Pipeline Software v1.0 User Guide

<FirstCycle>1</FirstCycle>
<LastCycle>24</LastCycle>
<Read>1</Read>

</Phasing>
<PhasingRestarts />

</BaseCallParameters>
<Cycles First="1" Last="24" Number="24" />
<Input Path="C1-24_Firecrest1.9.0_30-07-

2007_user.2" />
<RunParameters>
<AutoCycleFlag>0</AutoCycleFlag>
<BasecallFlag>1</BasecallFlag>
<Compression>gzip</Compression>
<CompressionSuffix>.gz</CompressionSuffix>
<Deblocked>0</Deblocked>
<DebugFlag>0</DebugFlag>
<ImagingReads Index="1">
<FirstCycle>1</FirstCycle>
<LastCycle>24</LastCycle>
<RunFolder>/data/070813_ILMN-1_0217_FC1234</

RunFolder>
</ImagingReads>
<Instrument>ILMN-1</Instrument>
<MakeFlag>1</MakeFlag>
<MaxCycle>-1</MaxCycle>
<MinCycle>-1</MinCycle>
<Reads Index="1">
<FirstCycle>1</FirstCycle>
<LastCycle>24</LastCycle>
<RunFolder>/data/070813_ILMN-1_0217_FC1234</

RunFolder>
</Reads>
<RunFolder>/data/070813_ILMN-1_0217_FC1234</

RunFolder>
</RunParameters>
<Software Name="Bustard" Version="1.9.0" />
<TileSelection>
<Lane Index="5">
<Sample>s</Sample>
<TileRange Max="5" Min="5" />

</Lane>
</TileSelection>
<Time>
<Start>30-07-07 18:01:50 BST</Start>

</Time>
<User Name="user" />

</Run>
</BaseCallAnalysis>

92 APPENDIX B
Output File Descriptions

Part # 1004759 Rev. A

Genome Analyzer Pipeline Software v1.0 User Guide 93

Appendix C

Using Parallelization

Topics
94 Introduction

94 “Make” Utilities

94 Standard “Make”

94 Customizing Parallelization

94 Distributed “Make”

97 Parallelization Limitations

98 Memory Limitations

94 APPENDIX C
Using Parallelization

Part # 1004759 Rev. A

Introduction

One of the main considerations behind the current Pipeline architecture is
the ability to use the parallelization facilities present on almost all SMP
machines and on most Linux/Unix clusters. Parallelization is scalable and
makes use of all available CPU power.

“Make” Utilities

Parallelization is built around the ability of the standard “make” utility to
execute in parallel across multiple processes on the same computer. Since
version 0.2.2, the Pipeline also provides a series of checkpoints and hooks
that enables you to customize the parallelization for your computing setup.
See Customizing Parallelization on page 94 for details.

Standard “Make” The standard “make” utility has many limitations, but it is universally
available and has a built-in parallelization switch (“-j”). For example, on a
dual-processor, dual-core system, running “make -j 4” instead of “make,”
executes the Pipeline run in parallel over four different processor cores, with
an almost 4-fold decrease in analysis run time. On a 4-way SMP system, “-j 8”
or more may be advisable.

Distributed “Make” There are several distributed versions of “make” for cluster systems.
Frequently used versions include “qmake” from Sun Grid Engine and
“lsmake” from LSF.

To use “qmake,” a short wrapper script is required. See the grid engine
documentation for details.

There are known issues with the use of “lsmake” that prevent parts of the
Pipeline from running. Therefore, Illumina does not recommend using
“lsmake” to run the Pipeline.

Customizing
Parallelization

Many parts of the Pipeline are intrinsically parallelizable by lane or tile.
However, some parts of the Pipeline cannot be parallelized completely.
Pipeline v.0.2.2 and later, has a series of additional hooks and check-points
for customization.

The Pipeline workflow is divided into the image analysis, base calling,
alignment. You can divide it further into a series of steps with different levels
of scalability where synchronization “barriers” cause the Pipeline to wait for
each of the tasks within a step to finish before going to the next step.

NOTE
Distributed cluster computing may require significant
system administration expertise.
Illumina does not support external installations.

“Make” Utilities 95

Genome Analyzer Pipeline Software v1.0 User Guide

You can parallelize the steps at the run level (no parallelization), the lane level
(up to eight jobs in parallel), and the tile level (up to thousands of jobs in
parallel). Each step is initiated by a “make” target. After completion of each
of these steps, the Pipeline produces a file or a series of files at the lane/tile
level, that determines whether all jobs belonging to the step have finished.
Finally, hooks are provided upon completion of the step to issue user-defined
external commands.

The Firecrest makefile creates two files, lanes.txt and tiles.txt, containing a list
of all lanes and tiles used in the run. This information is parsed and used to
feed your own analysis scripts.

Example of Parallelization

Typing “make” in the Firecrest folder is equivalent to the following series of
commands:

make default_offsets.txt
make s_1; make s_2; make s_3; make s_4; make s_5;

make s_6; make s_7; make s_8
make all

This command addresses each lane sequentially. Using parallelization, you
can run all eight commands on the second line in parallel, as long as you
make sure that they all finish before the final “make all” is issued. There are
several ways to parallelize these jobs. For example, you could send them to
the queue of a batch system, or just use “ssh” or “rsh” to send them to a
predetermined analysis computer.

In the following example, the second step is automatically started after the
first step (make s_1;) as the external command, “cmdf1.” The external
command will be issued after completion of the first step.

make -j 2 default_offsets.txt cmdf1='make s_1;
make s_2; make s_3; make s_4; \

make s_5; make s_6; make s_7; make s_8;' \
cmdf2='if [[-e s_1_finished.txt && -e

s_2_finished.txt && -e s_3_finished.txt \
&& -e s_4_finished.txt && -e s_5_finished.txt
&& -e s_6_finished.txt \

&& -e s_7_finished.txt && -e s_8_finished.txt]]; then
make all ; fi #'

This only makes sense if you parallelize the eight “make” commands instead
of using “make s_1,” as shown in the following example:

nohup ssh <mycomputenode1> make -j 4 s_1
—or—
bsub make s_1

After completing the eight “make” commands in the second step, the shell
command “cmdf2” is run to check for the existence of all eight checkfiles.
The next make command (make all) will be issued only after the completion
of the first seven lanes.

if [[-e s_1_finished.txt && -e s_2_finished.txt
&& -e s_3_finished.txt \

 && -e s_4_finished.txt && -e s_5_finished.txt
&& -e s_6_finished.txt \

 && -e s_7_finished.txt && -e s_8_finished.txt]];
then make all ; fi #

96 APPENDIX C
Using Parallelization

Part # 1004759 Rev. A

The reason for the final comment symbol (#) at the end of the shell command
above is that the Pipeline automatically supplies an argument to all
commands issued at the lane level and is used as an identifier for the actual
lane analyzed. In the example above, this argument is not used, and so it
needs to be commented out.

Image Analysis

This section lists the steps, corresponding make targets, checkfiles, and
hooks for image analysis by the Firecrest module.

Base Calling

This section lists the steps, corresponding make targets, checkfiles, and
hooks for base calling by the Bustard module.

NOTE
There is no need to declare the full shell command on the
command line. You could put all of the shell commands into
a shell script and call that script instead.

Parallelization Level Run Lane Tile

Target default_offsets.txt

Check File default_offsets.txt

Hook cmdf1

Target s_1 s_1_0001

Check File s_1_finished.txt (none)

Hook cmdf2 (none)

Target all

Check File finished.txt

Hook cmdf3

Parallelization Level Run Lane Tile

Target Phasing/
s_1_phasing.xml

Phasing/
s_1_0001_phasing.txt

Check File Phasing/
s_1_phasing.xml

Phasing/
s_1_0001_phasing.txt

Hook cmdb1 (none)

Target Phasing/
phasing.xml

“Make” Utilities 97

Genome Analyzer Pipeline Software v1.0 User Guide

Sequence Alignment

This section lists the steps, corresponding make targets, checkfiles and hooks
for sequence alignment by the GERALD module.

Parallelization
Limitations

The analysis works on a per-tile basis, so the maximum degree of
parallelization achievable is equal to the total number of tiles scanned during
the run. However, some parts of the Pipeline operate on a per-lane basis, and
a few parts on a per-run basis, which means that scaling will cease to be
linear at some stage for more than 8-way parallelization.

Check File Phasing/
phasing.xml

Hook cmdb2

Target s_1 s_1_0001

Check File s_1_finished.txt s_1_0001_qhg.txt

Hook cmdb3 (none)

Target all

Check File finished.txt

Hook cmdb4

Parallelization Level Run Lane

Target s_1

Check File s_1_finished.txt

Hook (none)

Target all

Check File finished.txt

Hook POST_RUN_COMMAND (Accessible
from GERALD config file)

Parallelization Level Run Lane Tile

98 APPENDIX C
Using Parallelization

Part # 1004759 Rev. A

Memory Limitations Most parts of the Pipeline have moderate memory requirements. However,
very dense runs on a Genome Analyzer II can require up to 2 GB per process.
ELAND uses up to 1 GB, which means that parallelization of ELAND is more
likely to run into memory issues. Because many load-sharing systems do not
take into account the memory used, ELAND is treated differently in the
Pipeline. Its parallelization is artificially prevented by an non-essential “make”
dependency. If you are certain that you cannot exhaust your available
memory, you can use a special option to the GERALD configuration file
(ELAND_MULTIPLE_INSTANCES 8) to remove this dependency. However,
you are responsible for making sure that you have up to 8 GB of RAM at your
disposal. For additional information, see Using GERALD on page 27.

Genome Analyzer Pipeline Software v1.0 User Guide 99

Appendix D

Base Call Calibration and
Alignment Scoring

Topics
100 Introduction

100 Goal

100 Method

100 Modifications to the Phred Formula

101 Characteristics of the Quality Scores Produced by the Base Caller

101 High Quality Scores

101 Limitations of the Recalibration Method

101 Major Alignment Errors

101 SNP Rate

101 Size of Data Set

102 General Usage

102 Configuring Quality Table Sources in GERALD

104 Expert Usage

104 Extracting Quality Predictors

106 Extracting Reference Bases

107 Creating a Quality Table

109 Generating New Quality Values

111 Configuring Quality Table Sources in GERALD

112 Default and Experimental Predictors

113 Further Considerations

114 Frequently Asked Questions

100 APPENDIX D
Base Call Calibration and Alignment Scoring

Part # 1004759 Rev. A

Introduction

The Genome Analyzer Pipeline Software contains a module for quality score
calibration. This is essentially a re-implementation of the method described
in the phred paper by Ewing & Green (Ewing B, Green P (1998) Base-Calling
of Automated Sequencer Traces Using Phred. II. Error Probabilities. Genome
Research, 8, 186).

Goal The main goal of the quality calibration is to bring the quality scores and
corresponding predicted error rates that the base-caller generates into line
with the error rates obtained from an alignment.

Method The calibration framework uses a set of trace-specific and base-specific
parameters that are indicative of the base-call quality to predict a new
calibrated quality score. The mapping between old and new scores is
encoded in a phred table. The mapping is calibrated on a set of known
alignments. The Pipeline performs the calibration procedure as a post-
processing step to the base-calling.

Each lane can be calibrated separately. The alignment obtained from the
lane itself can be used as a training set, resulting in a procedure we refer to
as auto-calibration (e.g. training set and target data are the same). In
addition, a table derived from a different data set (or a control lane) can be
applied (cross-calibration).

Modifications to
the Phred

Formula

The original base-caller (Bustard) scores are based on an error propagation of
the estimated noise on the underlying raw cluster intensities. The base-caller
generates four quality scores rather than just one, given the relative
probabilities that the underlying read is an A, C, G or T. The scores are
captured in a file format called _prb.txt. See Understanding the Run Folder
on page 8.

In order to accommodate the four different reads and obtain a sensible
dynamic range, we have modified the phred formula slightly to generate a
new set of quality scores that approaches the phred definition asymptotically
for Q > 10-15.

Characteristics of the Quality Scores Produced by the Base Caller 101

Genome Analyzer Pipeline Software v1.0 User Guide

Characteristics of the Quality Scores Produced by the Base
Caller

The raw scores produced by the base-caller have the following
characteristics:

1. They are monotonic predictors of base-quality even out to nominal
Q scores out to at least 40.

2. They provide additional information even for the non-called base.

High Quality
Scores

The calibration may be far from perfect, particularly for high quality scores
Q >> 10. Their dynamic range is artificially limited (currently to Q40). This is
an arbitrary cut-off motivated by the fact that the quality estimation
procedure used by the base-caller is unlikely to be accurate beyond the cut-
off.

Limitations of the Recalibration Method

The aim of the recalibration is to improve the correlation of the scores with
the error rates obtained from alignment against a known reference. There are
some limitations to this method as described in this section.

Major Alignment
Errors

The auto-calibration procedure that can be applied to improve the quality
calibration is based on the assumption that the alignments are more or less
correct; violations of that assumption will skew the calibration and limit the
accuracy of the calibration. For example, if the sample in question contains a
contaminant (e.g. E. coli sequence) at the 5% level, the corresponding reads
(depending on read-length and target genome) may be mistaken as aligned
reads and contribute significantly to the error rates.

SNP Rate A reference obtained for a different individual would limit the maximum
quality to the rate at which SNPs are observed, since the quality scores
cannot get better than the SNP rate.

Size of Data Set The maximum alignment score is also limited by the size of the data set. For
example, in order to obtain Q40, you would need around 10^4 base pairs at
a quality of Q40 (presumably, even more because of the Poisson counting
error).

102 APPENDIX D
Base Call Calibration and Alignment Scoring

Part # 1004759 Rev. A

General Usage

The calibration is part of the Pipeline version 0.2 and forward, and will be run
automatically as part of the genomic analysis. In Pipeline version 1.0, the
calibration has been rewritten to allow calibration from an external table or a
control lane.

Configuring
Quality Table

Sources in
GERALD

By default, the Pipeline generates a quality table for each lane (or for each
read in the lane) in which an analysis including alignment is performed and
then uses this quality table (or pair of quality tables) to reestimate the base-
call quality values of all the tiles in that lane.

Configuring Quality Table Sources

The source of the quality table used in the quality calibration for a lane may
be overridden by defining QCAL_SOURCE (or, for individual reads within a
paired read analysis, QCAL_SOURCE1 and/or QCAL_SOURCE2) in the
config.txt passed to GERALD.pl to configure GERALD analysis.

The supported values of the QCAL_SOURCE variables are listed below:

Paired-End Analysis

For cases where paired-end analysis is in use, the following principles apply:

1. If both lanes are paired, then any specification of the source lane for
read 1 of the target lane results in the read 1 qtable of the source lane
being used as the read 1 qtable in the target lane, and similarly for
read 2.

2. If only the target lane is paired, then there is only one qtable available in
the source lane but it may be used for both reads in the target lane.

3. If only the source lane is paired, then its read 1 qtable is (arbitrarily) used.

Table 30 QCAL_SOURCE Variable Values

Value Description

auto The qtable(s) used within the lane (to reestimate the base-call quality values) are the
qtable(s) generated for that lane (from the quality predictor values and called and
reference base values of bases in reads from that lane)

auto<n>, where n is the
number of a lane for which
alignment will be performed

The qtable(s) used in the lane are those generated for lane n. For example, “auto5”
means that the qtable(s) from lane 5 are used

/path/to/qtable.txt The qtable file at the specified path is used.

NOTE

As with any config.txt variable, the QCAL_SOURCE
variables may be specified for all lanes of a flow cell or
for any non-overlapping subsets of the flow cell lanes,
with the latter overriding the former, if both are
specified.

General Usage 103

Genome Analyzer Pipeline Software v1.0 User Guide

Example

The following example specifies the following condition:

1. Lanes 1–3 read 1 will use the lane 8 read 1 qtable; lanes 1–3 read 2 will
use the lane 8 read 2 qtable

2. Lane 4 read 1 will use the external ref51_qtable.txt qtable

3. Lane 4 read 2 will use the lane 7 read 2 qtable

4. Lanes 5–8 reads 1 and 2 will use the ref42_qtable.txt qtable
ANALYSIS eland_pair
QCAL_SOURCE /home/illumina/ref42_qtable.txt
123:QCAL_SOURCE auto8
4:QCAL_SOURCE1 /home/illumina/ref51_qtable.txt
4:QCAL_SOURCE2 auto7

Note that even though the lane 8 qtables will not be needed in lane 8, they
will still be generated for use in lanes 1–3.

NOTE

In a paired-read analysis lane, specification of
QCAL_SOURCE1 and/or QCAL_SOURCE2 will
override specification of QCAL_SOURCE, although
the latter will be used if it has been specified and not
overridden for a given read.

104 APPENDIX D
Base Call Calibration and Alignment Scoring

Part # 1004759 Rev. A

Expert Usage

This section describes the extraction of quality predictors.

Extracting
Quality

Predictors

The following is a simple example of extracting base-call quality predictor
(qval files):

Pipeline/QCalibration/extract_quality_predictors
s_2_0059_sig2.txt s_2_0059_prb.txt
s_2_0059_seq.txt s_2_0059_qval.txt

Input Data

Input data is read from the following files:
sig2 files containing the per-channel intensities.
prb files containing the uncalibrated probabilities of each possible base
type for each base.
seq files containing the called bases.

Output Data

The predictor values are written to the qval file.

Compression

Either or both of the relatively large sig2 and qval files may be compressed
and contain an additional suffix in the file name. The QVAL_COMPR
definition in the GERALD makefile specifies which type of compression, if
any, should be used.

Predictors

The current default predictors are as follows:
Cycle number
Per-base purity score
Minimum purity score over the first PURE_BASES cycles
Raw base-caller quality score

The choice of predictors is configurable.

Format of the qval File

The format of the uncompressed qval file is as follows:
Each row corresponds to one base.
The columns are tab-separated and each contains the values for one of
the quality predictors, with the exception of the last column, which
contains the called base types.

Paired-End Analysis

The above example is for a single-read analysis. For a paired-read analysis,
the following must be modified:

Expert Usage 105

Genome Analyzer Pipeline Software v1.0 User Guide

The “--multi_read” option must be specified.
The “--orig_read_lengths” option must be specified and also have as its
value the colon-separated lengths of the two reads, as in the following
example:
--orig_read_lengths 36:36

Two qval files must be specified, one each for the predictor values
associated with the two reads.

Detailed Usage of extract_quality_predictors

The detailed usage of the extract_quality_predictors binary is as follows:
For information about usage:
./extract_quality_predictors -h|--help

For extracting quality predictors (with available options listed):
./extract_quality_predictors
[-l|--orig_read_lengths <ORIG_READ_LENGTHS>

[-m|--multi_read]]
[-p|--pure_bases <PURE_BASES>]
[-z|--sig2_compression <gzip|bzip2>]
[-Z|--qval_compression <gzip|bzip2>]
[-x|--predictors <PREDICTOR_LIST>]
<sig2_file> <prb_file> <seq_file>
<qval_file | read1_qval_file read2_qval_file ...>

The format of the variables is described below:

Variable Description

ORIG_READ_LENGTHS Colon-separated list

PURE_BASES The number of cycles over which max_early_unchastity is
calculated (default 12)

PREDICTOR_LIST Colon-separated list drawn from the following valid
predictor names:

• homopol_len
• in_read_cycle
• max_early_unchastity
• max_local_unchastity
• raw_unquality
• signal_decay
• unchastity

Note: The default value for PREDICTOR_LIST is
in_read_cycle:unchastity:max_early_

unchastity:raw_unquality

NOTE

The naming of the predictors reflects the fact that the
prediction algorithm expects higher predictor values
to correspond to lower base-call quality. For example,
“unchastity” is simply “1 - chastity.”

106 APPENDIX D
Base Call Calibration and Alignment Scoring

Part # 1004759 Rev. A

Extracting
Reference Bases

In addition to the information contained in the qval files, the calibration
process also requires the reference value for each base for which it is
available; this is the case when the base is within a read that has been
uniquely aligned.

Method

The called bases are derived from the combination of seqpre files with saf
files (or from the corresponding align files that are produced by older analysis
modes) using saf2qref.pl Perl script (or align2qref.pl for older analysis
modes).

Detailed Usage of saf2qref.pl

The usage of the saf2qref.pl script is as follows:
paste seqpreFile safFile | ./saf2qref.pl
[--read1 | --read2]
--use_bases USE_BASES

--orig_read_lengths ORIG_READ_LENGTHS
qref_prefix qref_suffix > qrefFile

The format of the variables is described below:

NOTE

In versions of the Pipeline prior to version 1.0, these
reference base values were included in the qval files;
the current separation reflects the stages within the
Pipeline at which the two types of information
become available.

NOTE

The qref_prefix and qref_suffix options are required so
that saf2qref.pl can generate a qref file for each tile
represented in the per-lane saf file. The qref_prefix
should normally be the lane prefix plus a trailing
underscore. For example, s_1_ is the prefix for lane 1.
The qref suffix will normally be _qref.txt for single-
read analysis, and _<READ_NUM>_qref.txt,
(_1_qref.txt) for read 1, for paired-read analysis.

Variables Description

USE_BASES The USE_BASES string should correspond in length to the total
number (across all reads) of cycles passed through from the Bustard
analysis module and contain only the following:

• “Y” at the position of a cycle to be included in read 1 analysis
• “y” at the position of a cycle to be included in read 2 analysis
• “n” at the position of any cycle to be masked out of analysis

Occurrences of “y” must follow occurrences of “Y.” In addition,
only contiguous occurrences of “Y” and “y” respectively are
supported.

Expert Usage 107

Genome Analyzer Pipeline Software v1.0 User Guide

Paired-End Analysis

For paired-read analysis, either “--read1” or “--read2” option must be
specified as appropriate.

Example

The following is a complete example:
paste s_1_1_seqpre.txt s_1_1_saf.txt |

Pipeline/Gerald/saf2qref.pl --read1
--use_bases

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYnyyyyyy
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyn

--orig_read_lengths 36:36 s_1_ _1_qref.txt

Older Analysis Modes

The usage of align2qref.pl for older analysis modes is somewhat simpler as
none of the older modes support paired reads and the align files are per tile
(note that align2qref.pl writes all the reference bases it extracts to a standard
output, unlike saf2qref.pl which generates an output file per tile).

The usage of the align2qref.pl script for older analysis modes is as follows:
cat alignFile | ./align2qref.pl

--use_bases USE_BASES > qrefFile

Output File Format

The format of the qref file produced with either analysis mode is the same, a
single column of reference bases. Within sets of bases corresponding to an
aligned read, any bases corresponding to cycles masked out by USE_BASES
will be represented by a dot (period). The bases corresponding to reads not
uniquely aligned will all be represented in the same manner, as will any
unknown bases in reference sequence to which reads have been uniquely
aligned.

Creating a
Quality Table

In this section, the creation of a quality table (qtable file) is explained.

Example

A simple example of quality table generation is :
Pipeline/QCalibration/QualityCalibration

--cfg Pipeline/QCalibration/
QualityCalibration.xml
s_5_0001_qval.txt > s_5_0001_qtable.txt

You can specify an arbitrary number of qval files.
The qval file could have more than four parameters.

ORIG_READ_
LENGTHS

The ORIG_READ_LENGTHS string should comprise a colon-
separated list of the original lengths of reads passed through from
the Bustard analysis stage. For paired reads, this might be “36:36.”
The sum of these values should equal the length of the
USE_BASES string.

Variables Description

108 APPENDIX D
Base Call Calibration and Alignment Scoring

Part # 1004759 Rev. A

Parameter Binning

Two schemata are supported for the specification of parameter bin
boundaries.

One allows arbitrary binnings to be supplied explicitly as a list.
<Parameter>
 <Name>Predictor</Name>
 <BinBoundaries>-0.7 0.3 4.2 20.5 101.0</

BinBoundaries>
</Parameter>

The other allows concise specification of a binning in which all bins
except the end ones are of equal width.
<Parameter>
 <Name>Purity Score Per Base</Name>
 <FirstBinLowBound>-0.025</FirstBinLowBound>
 <FirstBinHighBound>0.525</FirstBinHighBound>
 <LastBinLowBound>0.975</LastBinLowBound>
 <LastBinHighBound>1.025</LastBinHighBound>
 <NumBins>11</NumBins>
</Parameter>

Input Data

QualityCalibration derives the name of a corresponding qref file (containing
the reference bases that it needs) from each qval file that is specified. It does
this by replacing the qval filename suffix (by default, _qval.txt) with the qref
filename suffix (by default, _qref.txt). These suffix strings can be overridden if
required (see Overriding Suffix Strings on page 109).

The qval files can either be listed as explicit arguments to QualityCalibration
or can be derived from the contents of a tile list file, tiles.txt. In the latter
case, the qval file names are generated from those tile names in the tile list
file that match a specified prefix, by appending the default or specified qval
file suffix.

Output Data
In standard Pipeline practice, the prefix corresponds to a lane (e.g. “s_1” for
lane 1) and the output is written to one quality table for that lane for single
read analysis.

NOTE

The calibration routines are agnostic as to the number
of parameters, so it would be easy to use a different
set of parameters with a different extractor script. The
binning for these parameters must be configured in
an XML file such as QualityCalibration.xml. The path is
the first argument expected by QualityCalibration. As
yet, the implementation of QualityCalibration does
not support the auto-generation of parameter
binnings.

Expert Usage 109

Genome Analyzer Pipeline Software v1.0 User Guide

Paired-End Analysis

For paired-end analysis, two per-read quality tables are produced by
separate applications of QualityCalibration to each per-read set of qval files,
with specification of the latter by suffix strings that include the read number
(e.g. _1_qval.txt could be used for read 1 and _2_qval.txt for read 2).

Compression
QualityCalibration can read from compressed qval (and/or qref) files, if this is
specified. The corresponding suffixes will then have to be specified in full as
QualityCalibration does not automatically append compression-related
extensions.

Detailed Usage of QualityCalibration

The detailed usage of the QualityCalibration binary is as follows:
For information about usage:
./QualityCalibration -h|--help

For creating the quality table (with available options listed):
./QualityCalibration[-S|--qval_suffix _qval.txt]
[-s|--qref_suffix _qref.txt]
[-Z|--qval_compression none|gzip|bzip2]
[-z|--qref_compression none|gzip|bzip2]
-c|--cfg <cfg_file.xml>
< <qvalue-file1> [<qvalue-file2> ...]
 | -T|--tile_list_file <tiles.txt>
 -t|--tile_prefix <lane_prefix e.g. s_3> >

Overriding Suffix Strings

The qval_suffix and qref_suffix options (with default values as shown above)
are used to generate qref filenames from the specified qval filenames. In
addition, if the qval files are specified by means of a tile list file plus lane
prefix filter, the qval_suffix is appended to the tile names to generate the qval
filenames. In this case, non-default suffix values may be required (e.g.
_1_qval.txt and _1_qref.txt for read 1 in eland pair analysis).

Generating New
Quality Values

In standard Pipeline practice, QualityApply is run once per lane (or per read
per lane) to produce a per-lane (or per-read, per-lane) qcal file from all the
corresponding qval files.

Example

The following is a simple example of reestimation of quality values:
Pipeline/QCalibration/QualityApply

--orig_read_lengths 36:36
s_5_qtable.txt s_5_0001_qval.txt \
> s_5_0001_qcal.txt

This shows the reestimation of the quality values for base-calls within the
reads in one tile, based upon a quality table calculated for the whole lane.

110 APPENDIX D
Base Call Calibration and Alignment Scoring

Part # 1004759 Rev. A

Input Data

As with QualityCalibration, multiple qval files may be specified by means of a
tile list file as an alternative to listing them explicitly.

Unlike QualityCalibration, QualityApply does not use qref files.

Output Data

The default output format for the reestimated quality values is symbolic.
Specifically, the value is represented by the ASCII character for which the
code is the value added to 64, allowing a range of negative as well as
positive values to be compactly displayed. Each output row is a single string
of such characters, corresponding to the bases of a single read.

Numeric output may be specified instead; each output row again
corresponds to a single read but consists of space-separated numbers.

Compression

Once again, the qval files may be supplied and used in compressed form if
this is specified; the use of any compression extension will require the explicit
specification of a qval file suffix including it.

Detailed Usage of QualityApply

The detailed usage of the QualityApply binary is as follows:
For information about usage:
./QualityApply -h|--help

For generating new quality values (with available options listed):
./QualityApply
-1|--orig_read_lenths <ORIG_READ_LENGTHS>
[-r|--read READ_NUM]
[-Z|--qval_compression none|gzip|bzip2]
[-n|--numeric | -s|--symbolic]
<qtable-file>
< <qvalue-file1> [<qvalue-file2> ...]
 | -T|--tile_list_file <tiles.txt>
 -t|--tile_prefix <lane_prefix e.g. s_3>
 [-S|--qval_suffix _qval.txt] >

Paired-End Analysis

A non-default suffix value may be required for paired-end analysis (e.g.
_1_qval.txt for read 1 and _2_qval.txt for read 2).

NOTE
If the qval files are specified by means of a tile list file
plus lane prefix filter, the qval_suffix is appended to
the tile names to generate the qval filenames.

Expert Usage 111

Genome Analyzer Pipeline Software v1.0 User Guide

Configuring
Quality Table

Sources in
GERALD

By default, the Pipeline generates a quality table for each lane in which an
analysis including alignment is performed. Then, Pipeline uses this quality
table (or pair of quality tables) to reestimate the base-call quality values of all
the tiles in that lane.

The source of the quality table(s) used in the quality calibration for a lane may
be overridden by defining QCAL_SOURCE (or, for individual reads within a
paired-end analysis, QCAL_SOURCE1 and/or QCAL_SOURCE2) in the
config.txt passed to GERALD.pl to configure GERALD analysis.

Supported Values of QCAL_SOURCE Variables

As with any config.txt variable, the QCAL_SOURCE variables may be
specified on a flow cell-wide basis or for any non-overlapping subsets of the
flow cell lanes, with the latter overriding the former if both are specified.

Paired-End Analysis

In a paired-end analysis lane, specification of QCAL_SOURCE1 and/or
QCAL_SOURCE2 will override specification of QCAL_SOURCE, although the
latter will be used if it has been specified and not overridden for a given
read.

The interpretations for cases where paired-end analysis is in use for either or
both of the source lane and the target lane are intended to be based upon
the principle of least surprise:

1. If both lanes are paired, then any specification of the source lane for
read 1 of the target lane results in the read 1 qtable of the source lane
being used as the read 1 qtable in the target lane - and similarly for
read 2.

2. If only the target lane is paired, then there is only one qtable available in
the source lane but it may be used for both reads in the target lane.

3. If only the source lane is paired, then the read 1 qtable is used.

Example
ANALYSIS eland_pair
QCAL_SOURCE /home/illumina/ref42_qtable.txt
123:QCAL_SOURCE auto8
4:QCAL_SOURCE1 /home/illumina/ref51_qtable.txt
4:QCAL_SOURCE2 auto7

The previous example specifies the following qtable usage:

Supported Value Description

auto the qtable(s) used within the lane (to re-estimate the base-call quality values)
will be the qtable(s) generated for that lane (from the quality predictor values
and called and reference base values of bases in reads from that lane)

auto<n>, where n is the number of a
lane for which alignment will be
performed

 the qtable(s) used in the lane will be those generated for lane n, e.g. `auto5'
means that the qtable(s) from lane 5 will be used

/path/to/qtable.txt the qtable file at the specified path will be used

112 APPENDIX D
Base Call Calibration and Alignment Scoring

Part # 1004759 Rev. A

1. Lanes 1–3 read 1 will use the lane 8 read 1 qtable; lanes 1–3 read 2 will
use the lane 8 read 2 qtable

2. Lane 4 read 1 will use the external ref51_qtable.txt qtable

3. Lane 4 read 2 will use the lane 7 read 2 qtable

4. Lanes 5–8 read 1 and read 2 will use the ref42_qtable.txt qtable

Even though the lane 8 qtables will not be needed in lane 8, they will still be
generated for use in lanes 1–3.

Default and
Experimental

Predictors

The extract_quality_predictors script produces four default base-call quality
predictors. In addition, three experimental predictors are currently supported
for development purposes. All of these predictors are listed in this section.

Default Base-Call Quality Predictors

The default base-call quality predictors produced by
extract_quality_predictors are listed in Table 31 on page 112.

Experimental Base-Call Quality Predictors

The experimental predictors for development purposes are listed in Table 32
on page 113.

NOTE
Future releases may contain additional experimental
predictors.

Table 31 Default Base-Call Quality Predictors

Predictor Description

in_read_cycle This is the (1-offset) cycle number; for multiple read analysis
this cycle number is relative to the read in which the base
occurs, e.g. it would be 2 rather than 38 for the second
cycle of the second read of a pair of 36-cycle reads

unchastity The `chastity' statistic for a base is defined as the ratio of
the highest of the four (base type) intensities to the sum of
highest two; the `unchastity' predictor is simply the chastity
value subtracted from 1.

max_early_unc
hastity

This is the maximum unchastity value over the first
PURE_BASES (12 by default) bases in the read in which the
base of interest occurs.

raw_unquality This is the negative of the highest of the base type
probabilities estimated by Bustard for the base.

Expert Usage 113

Genome Analyzer Pipeline Software v1.0 User Guide

Further
Considerations

Take the following points into consideration when performing your
calibration:

Best achievable Q score depends on total number of data points
(because of the 1+... term in the version of the phred formula
implemented in the paper).
The quality of alignments in training data set is also crucial.
The parameters used are not always strictly monotonic predictors for
data quality. Furthermore, there is a tendency of the phred algorithm to
overfit and there are cases when subsets of the data actually have higher
quality scores than earlier rules.

Table 32 Experimental Base-Call Quality Predictors

Predictor Description

max_local_unc
hastity

This is the maximum unchastity over a window of bases
centred on the base of interest; two neighbours on either
side are considered.

homopol_len This is the length of the run of the same called base type in
which the base of interest occurs; the “run” will be of
length one if the base type called for the base of interest
differs from both that called for the base before it and that
called for the base after it in the read. (This initial predictor
ignores the position of the base of interest within a
homopolymer run.)

signal_decay This is the proportion by which the highest intensity
associated with the current base is less than the highest
intensity associated with the first cycle base.
The value is constrained by thresholding to be in the
intuitively expected range 0 to 1; possibilities such as a
highest intensity increase or negative intensities (these can
result from scaling of the intensities by Bustard) might
otherwise result in a value outside this range.

114 APPENDIX D
Base Call Calibration and Alignment Scoring

Part # 1004759 Rev. A

Frequently Asked Questions

What's the difference between Illumina's base scores and Phred
scores?

Like Phred scores, the Illumina base scoring scheme is just a way of
expressing estimates of sequencing error probability in a convenient
form.
Many people are familiar with Phred scores, named after the Phred
base-calling software developed by Phil Green and coworkers. A
Phred score of a base is

Qphred =-10 log10(e)
where e is the estimated probability of a base being wrong. If a base
is estimated to have a 1% chance of being wrong, it gets a Phred
score of 20. Phred score=30 corresponds to 0.1% estimated error, 40
to 0.01%, and so on.
The base scores produced by the base caller use a 4-values-per-base
scheme which also encodes information on the next most likely base
call. After some discussion with James Bonfield at Sanger, the follow-
ing score was chosen:

QIllumina =10log10(p(X)/(1-p(X))
You will get one positive score - that's the score of your base call -
and three negative scores.
To convert from a Illumina score back to a probability value use:

p(X) = 1 - 1/(1+10 (QIllumina/10))

Figure 6 Q vs. Qphred

NOTE

Important point: the highest Illumina base score and
the Phred score are asymptotically identical. This
means that for scores of about 15 and above they are
so close as to be effectively the same.
For the precise of mind the exact formula is:
QIllumina = Qphred + 10 log10(1-e)

Frequently Asked Questions 115

Genome Analyzer Pipeline Software v1.0 User Guide

It's important to separate the notion of a base scoring scheme from
the base scores themselves, which are just estimates of error proba-
bility as encoded by the scheme. The Bustard base caller produces
error rates in the 4 values per base format, these are held in the
_prb.txt files in the Bustard directory.

What are the different quality scores used by the PhageAlign
program?

When run in the “ANALYSIS default” mode, the Pipeline uses the
PhageAlign program to align reads against a reference, weighting
each base according to the intensity-based quality values produced
by the base caller. The output of this goes in the _qalign.txt files. The
quality scores are not calibrated, underestimate base quality for
lower quality values, and overestimate base quality for higher values.
However in “ANALYSIS default” mode the Pipeline also generates its
own “empirical quality values” and realigns using those values. This
predates intensity-based quality values being produced by the base
caller and still provides a useful validation of the intensity-based
quality values.

This is done as follows:
A first PhageAlign alignment is done giving all bases equal weight
and stored in the _align.txt files. A match base is arbitrarily given a
score of 500, equating to 100000:1 chance of the base being wrong.
If the base is assumed to have an equal probability of being mis-
sequenced as each of the three possible mismatches, a score of -547
for a mismatch results.
This alignment is used to compute an empirical error probability for
each base at each cycle.
These probabilities are converted to Illumina scores and stored in the
_score.txt files.
The sequences are realigned, weighting the bases according to the
alignment scores, and stored in the _prealign.txt files. The align-
ments are purity filtered and the results go in the _realign.txt files.
See Intermediate Output Data Files on page 83 for file descriptions.

How valid is it to estimate base quality by looking at alignments?
Depends on:
— What you are aligning against.

— What you are using to do the alignment.

When estimating error rates from alignments, keep in mind that what
you want is the probability that a base is wrong. However, what you
actually get is the probability that a base is wrong given that the read
it is in is uniquely alignable to your reference. This in turn depends
on several things:

NOTE

At the moment PhageAlign still uses the scoring scheme
S=100log10(p(X)/(1-p(X)), i.e. 10 times as high as the
_prb.txt scores. This will be fixed in the next Pipeline
release.

116 APPENDIX D
Base Call Calibration and Alignment Scoring

Part # 1004759 Rev. A

a. How sensitive your alignment program is. The ELAND program only
detects alignments with at most two errors per fragment, therefore
the noisier reads having three or more errors will be ignored,
meaning that error rate estimates obtained from ELAND alignments
underestimate the true error rate.

b. The uniqueness of reads in your target. This in turn depends on your
read length, the length of your reference sequence, and how
repetitive your reference sequence is. Obviously, only the first of
these is (mostly) under your control. If your read length is too short to
compensate for the other two factors, then it may be the case that a
read with three errors will often also be “three errors similar” to
another position in the reference, as well as to its originating
position. It therefore can not be uniquely aligned.

This means, again, that noisier reads tend to be “lost” and so not
contribute to the error rate calculation. So, again, the estimated error
rate will underestimate the true error rate, but it's important to realize
that we get the same effect as in point a, but for a different reason.
Even if we have a “perfect” alignment program, we are still subject
to this phenomenon.

c. Contaminants in the sample may contribute to error rates depending
on the read-length, target sample, and the edit distance of the
contaminant reads to the target genome.
The PhiX or human BAC sequencing runs performed for validation
purposes mitigate both point a and b to a large extent, meaning that
the calculated error rates closely estimate the true error rate. The
PhageAlign program allows any number of errors per fragment, and
reads of the default read length of 25 are able to be uniquely aligned
to the BAC even in the presence of six or seven sequencing errors in
a single fragment.

Figure 7 Actual vs. Computed Error Rate for Three Sets of Simulated
Reads

Figure 7 shows the effect of generating simulated BAC reads whose
distribution of sequencing errors matched that observed in three
actual experiments. An error rate was then computed by analyzing
the simulated reads with the Pipeline. There is an extremely close
match between the “actual” and “computed” error rates (and also

Frequently Asked Questions 117

Genome Analyzer Pipeline Software v1.0 User Guide

that the computed error rates slightly underestimate the actual error
rates, for the reasons outlined above).

Where are the alignment scores in the PhageAlign output?
AGTAGGAGGTGAGGCGGGGAGTAGG 5171 1 150002 F

AGCAGCAGCAGAAGCAGGGAGGAGG 4124
Field 1 is the read, field 2 is the score of its best alignment. Field 3 is
the number of positions in the reference sequence to which the read
aligns with that score. If this is 1 (i.e. there is a unique best match),
then a further four fields are present. Fields 4 and 5 are the position
and strand of the unique best match, field 6 is the portion of the ref-
erence the read aligned to, and field 7 is the score of the next high-
est match.

Where are the alignment scores in ELAND output?
Alignment scores are produced as part of both eland_extended and
eland_pair analyses and the results are placed in the export file. See
Table 28, Final Output File Formats, on page 86 for a description of
the export file.

How do Illumina scores relate to BLAST scores?
Short answer: not closely. Most of the existing work on alignment sta-
tistics, including Karlin-Altschul statistics and the theory behind
BLAST, pertains to local alignments: given two sequences, e.g. your
500 base pair read and a public database, find the “maximal scoring
pair” where subregions of the two sequences having the highest
alignment score according to some scoring scheme. This problem is
exactly solved by the Smith-Waterman algorithm and approximately
solved more quickly by BLAST and other alignment programs.
The alignment problem for Illumina and other short reads is a global
alignment problem: what is the best alignment of all bases of the
read in the target database?

118 APPENDIX D
Base Call Calibration and Alignment Scoring

Part # 1004759 Rev. A

Genome Analyzer Pipeline Software v1.0 User Guide 119

Index

A
All.htm file 57
analysis modules 6
analysis output 2, 48

cluster intensity 81
error rates 57
file formats 86
file naming 58
lane averages 56
proportion of reads 57
quality scores 82
raw sequences 81
summary 48
tile-by-tile 57

analysis parameters 30
ANALYSIS variables 29

B
base calling 2
Bustard 7
bustard.py script 6, 22, 66

C
clean 24
clusters passing filters 62, 63
clusters per tile 61
compression 22, 25
config.txt file 21, 33, 35
contaminant filtering 33
control lanes 22, 66
cycle selection 21

D
data folder 10
default_offsets.txt 13

E
ELAND 7, 16, 41

analysis modes 29

error rates 57
eland_extended 29, 42
ELAND_MAX_MATCHES 43
ELAND_MULTIPLE_INSTANCES 40
eland_pair 29, 43
ELAND_SEED_LENGTH 43
ELAND_standalone.py script 68
eland_tag 29, 41
ELAND_test.pl script 70
email reporting 75
error rates 16, 57, 63
Error.htm file 57

F
fasta file format 38, 41
filtering parameters 31
Firecrest 7
first cycle intensity 61
FORCE option 33
frequency cross-talk 7, 14, 22

G
gene expression 29

eland_tag 41
GERALD 7, 28
GERALD.pl script 6, 28, 67
GOAT 6
goat_pipeline.py script 6, 19, 22

H
hardware requirements 73
help

reporting problems 4
technical support 4

I
image analysis 2
images folder 10
installation 77
intensity curves 64

120 Index

Part # 1004759 Rev. A

IPAR analysis 23
IPAR folder 20
IVC.htm file 56

L
lane selection 36
Linux Red Hat 75

M
make 6, 21, 94
make recursive 19, 25
makefile targets 24
matrix file 22
matrix.txt file 14
monotemplate 29

N
network requirements 72
new-read-cycle 12, 21
nobasecall 22
nohup 20

P
PAIR_PARAMS 44
paired reads 12

analysis variables 29
command line variations 23
configuration file options 37
eland_pair 43

parallelization 20, 24, 94
limitations 97

parameters file 12
Data folder 10
file format 89
image analysis folder 11

parameters files
contents 6

Perfect.htm file 57
PhageAlign 7, 16

error rates 57
phasing 7, 22, 23
phasing.xml file 15
phasing/prephasing percentage 63
prephasing 7, 23

Q
quality filtering 33
quality scores 82, 100

R
Run Folder 8

naming 11
structure 9

run quality 60
runReport.pl script 75

S
sequence alignments 2, 28
sequence_pair 30
software requirements 75
squashGenome 38
standard deviations 63
Summary.htm file 48, 60

T
technical support 4
tile selection 21, 24, 67
tile variability 64

U
USE_BASES 30, 31

Illumina, Inc.
9885 Towne Centre Drive
San Diego, CA 92121-1975
+1.800.809.ILMN (4566)
+1.858.202.4566 (outside North America)
techsupport@illumina.com
www.illumina.com

	Notice
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Overview
	Introduction
	Additional Information

	Genome Analyzer Pipeline Software Workflow
	Installation
	Running the Analysis
	Analysis Output

	Reporting Problems
	Technical Assistance

	Core Concepts
	Introduction
	Analysis Modules
	Understanding the Run Folder
	Run Folder Structure
	Images Folder
	Data Folder
	Run Folder Naming
	File Naming
	Parameters
	Paired Reads

	Calibration and Input Parameters
	Image Offsets
	Frequency Cross- Talk Matrix
	Phasing/Prephasing Estimates
	Sample Information

	Alignment Algorithms

	Running the Analysis
	Introduction
	Starting the Genome Analyzer Pipeline Software
	Running a Standard Analysis
	Specifying the IPAR Folder
	Parallelization Switch
	Nohup Command

	Command Line Options
	General Options
	GOAT Options
	GOAT and Bustard Options
	Paired Reads
	IPAR Analysis
	Makefile Targets

	Using GERALD
	Introduction
	GERALD Parameters
	ANALYSIS Variables
	Analysis Parameters
	Filtering Parameters
	USE_BASES Option
	Lane-by-Lane Parameters
	FORCE Option
	Rerunning the Analysis
	Contaminant Filtering
	Building an SRF Archive

	GERALD Configuration File
	Lane-Specific Options
	Optional Parameters
	Paired-End Analysis Options

	Preparing the Reference Genome
	ELAND Alignments
	Missing Bases in ELAND
	Using ANALYSIS eland_tag
	Using ANALYSIS eland_extended
	Using ANALYSIS eland_pair

	Analysis Output
	Introduction
	Visual Analysis Summary
	Results Summary
	Cluster Intensity
	Error Rates

	Text-Based Analysis Results
	Interpretation of Run Quality
	Summary.htm
	IVC.htm
	All.htm and Error.htm

	Advanced Pipeline Usage
	Introduction
	Running Bustard as a Standalone Program
	Assigning a Control Lane

	Running GERALD as a Standalone Program
	Additional “Make” Options

	Running ELAND as a Standalone Program
	Compiling ELAND
	Command Line Syntax

	System Requirements and Software Installation
	Introduction
	System Requirements
	Network Infrastructure
	Analysis Computer

	Installation Prerequisites
	Setting Up Email Reporting

	Installing the Pipeline Software
	Compiling on Other Platforms
	Directory Setup

	Output File Descriptions
	Introduction
	Output File Types
	Intensity Files
	Sequence Files
	Quality Score Files
	Efficiency

	Intermediate Output Data Files
	Output File Formats
	Parameters File Format

	Using Parallelization
	Introduction
	“Make” Utilities
	Standard “Make”
	Distributed “Make”
	Customizing Parallelization
	Parallelization Limitations
	Memory Limitations

	Base Call Calibration and Alignment Scoring
	Introduction
	Goal
	Method
	Modifications to the Phred Formula

	Characteristics of the Quality Scores Produced by the Base Caller
	High Quality Scores

	Limitations of the Recalibration Method
	Major Alignment Errors
	SNP Rate
	Size of Data Set

	General Usage
	Configuring Quality Table Sources in GERALD

	Expert Usage
	Extracting Quality Predictors
	Extracting Reference Bases
	Creating a Quality Table
	Generating New Quality Values
	Configuring Quality Table Sources in GERALD
	Default and Experimental Predictors
	Further Considerations

	Frequently Asked Questions
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	P
	Q
	R
	S
	T
	U

