Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • RNA-Seq: A Statistical Framework for eQTL Mapping Using RNA-seq Data.

    Syndicated from PubMed RSS Feeds

    A Statistical Framework for eQTL Mapping Using RNA-seq Data.

    Biometrics. 2011 Aug 12;

    Authors: Sun W

    Summary RNA-seq may replace gene expression microarrays in the near future. Using RNA-seq, the expression of a gene can be estimated using the total number of sequence reads mapped to that gene, known as the total read count (TReC). Traditional expression quantitative trait locus (eQTL) mapping methods, such as linear regression, can be applied to TReC measurements after they are properly normalized. In this article, we show that eQTL mapping, by directly modeling TReC using discrete distributions, has higher statistical power than the two-step approach: data normalization followed by linear regression. In addition, RNA-seq provides information on allele-specific expression (ASE) that is not available from microarrays. By combining the information from TReC and ASE, we can computationally distinguish cis- and trans-eQTL and further improve the power of cis-eQTL mapping. Both simulation and real data studies confirm the improved power of our new methods. We also discuss the design issues of RNA-seq experiments. Specifically, we show that by combining TReC and ASE measurements, it is possible to minimize cost and retain the statistical power of cis-eQTL mapping by reducing sample size while increasing the number of sequence reads per sample. In addition to RNA-seq data, our method can also be employed to study the genetic basis of other types of sequencing data, such as chromatin immunoprecipitation followed by DNA sequencing data. In this article, we focus on eQTL mapping of a single gene using the association-based method. However, our method establishes a statistical framework for future developments of eQTL mapping methods using RNA-seq data (e.g., linkage-based eQTL mapping), and the joint study of multiple genetic markers and/or multiple genes.

    PMID: 21838806 [PubMed - as supplied by publisher]



    More...

Latest Articles

Collapse

  • seqadmin
    Essential Discoveries and Tools in Epitranscriptomics
    by seqadmin




    The field of epigenetics has traditionally concentrated more on DNA and how changes like methylation and phosphorylation of histones impact gene expression and regulation. However, our increased understanding of RNA modifications and their importance in cellular processes has led to a rise in epitranscriptomics research. “Epitranscriptomics brings together the concepts of epigenetics and gene expression,” explained Adrien Leger, PhD, Principal Research Scientist...
    04-22-2024, 07:01 AM
  • seqadmin
    Current Approaches to Protein Sequencing
    by seqadmin


    Proteins are often described as the workhorses of the cell, and identifying their sequences is key to understanding their role in biological processes and disease. Currently, the most common technique used to determine protein sequences is mass spectrometry. While still a valuable tool, mass spectrometry faces several limitations and requires a highly experienced scientist familiar with the equipment to operate it. Additionally, other proteomic methods, like affinity assays, are constrained...
    04-04-2024, 04:25 PM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, 04-11-2024, 12:08 PM
0 responses
59 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 10:19 PM
0 responses
57 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 09:21 AM
0 responses
53 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-04-2024, 09:00 AM
0 responses
56 views
0 likes
Last Post seqadmin  
Working...
X