Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Mapping RefSeq transcripts to the genome using UCSC - See more at: http://blog.avadis

    Mapping RefSeq transcripts to the genome using UCSC - See more at: http://blog.avadis-ngs.com/#sthash.9KimlOwK.dpuf

    Transcript annotations are extensively used in NGS data analysis. In RNA-Seq, they are used at every step of the pipeline – to map spliced reads against the genome, perform quantification, detect novel exons etc. In DNA-Seq, they are used to predict the effect of variants detected in the sample. Clearly accurate transcript annotations are vital for NGS work.
    Many researchers prefer to work with RefSeq transcripts because they are manually curated. But there is a problem. The RefSeq transcript project provides the transcript sequence and the location of exons on the transcript sequence but does not provide the genomic coordinates for the exons. So one common strategy is to obtain the genomic coordinates from UCSC. The folks at UCSC routinely align the RefSeq transcript sequences against the genome using BLAT and make the results available as a “refFlat” files in their download site.
    Unfortunately, these BLAT alignment are sometimes wrong.
    Shown below is the transcript track for TNNI3 which is a gene on the negative strand of chromosome 19. Note that the coding region of the first exon in the “RefSeq genes” picture occupies 22bp while the USCC track at the top shows only 11bp.
    Exon 1 of TNNI3 in UCSC

    The RefSeq transcript that was used by UCSC for alignment can be obtained by clicking on the TNNI3 word in the RefSeq gene track and it is NM_000363.4. A portion of the transcript entry is shown below.
    TNNI3 RefSeq transcript details

    The RefSeq entry clearly indicates that only 11 bases (144-154) at the end of the first exon represent coding bases. Moreover, the transcript has a CCDS entry indicating that there is a genomic alignment which translates to the protein sequence shown.
    To get a better understanding of the problem, we looked at the UCSC and the RefSeq transcripts in more detail in the Elastic Genome Browser. The introns have been compressed so that exonic and essential splice site sequences can be seen in more detail.
    TNNI3 in EGB

    Some of the observations from the above picture are:
    the alignment for the RefSeq transcript leads to a premature stop-codon very early on,
    the essential splice site signals are correct in the UCSC transcript but wrong in the RefSeq transcript alignment
    These are sanity checks that any researcher using the UCSC alignments of RefSeq transcripts should incorporate before carrying out analysis.
    And, finally, the picture also suggests why this error happened. The incorrect extension to exon 1 in the RefSeq transcript alignment (GCATCACTCAC) is very similar to the sequence of the small exon 2 present in the UCSC transcript (GCATCGCTGCTC). It is possible that the BLAT alignment is not well suited for detecting small intermediate exons especially if there is an alternate alignment which is very similar.
    - See more at: http://blog.avadis-ngs.com/#sthash.9KimlOwK.dpuf

Latest Articles

Collapse

  • seqadmin
    Essential Discoveries and Tools in Epitranscriptomics
    by seqadmin


    The field of epigenetics has traditionally concentrated more on DNA and how changes like methylation and phosphorylation of histones impact gene expression and regulation. However, our increased understanding of RNA modifications and their importance in cellular processes has led to a rise in epitranscriptomics research. “Epitranscriptomics brings together the concepts of epigenetics and gene expression,” explained Adrien Leger, PhD, Principal Research Scientist on Modified Bases...
    Yesterday, 07:01 AM
  • seqadmin
    Current Approaches to Protein Sequencing
    by seqadmin


    Proteins are often described as the workhorses of the cell, and identifying their sequences is key to understanding their role in biological processes and disease. Currently, the most common technique used to determine protein sequences is mass spectrometry. While still a valuable tool, mass spectrometry faces several limitations and requires a highly experienced scientist familiar with the equipment to operate it. Additionally, other proteomic methods, like affinity assays, are constrained...
    04-04-2024, 04:25 PM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, 04-11-2024, 12:08 PM
0 responses
39 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 10:19 PM
0 responses
41 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 09:21 AM
0 responses
35 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-04-2024, 09:00 AM
0 responses
55 views
0 likes
Last Post seqadmin  
Working...
X