Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • PubMed: Hybrid capture and next-generation sequencing identify viral integration site

    Syndicated from PubMed RSS Feeds

    Hybrid capture and next-generation sequencing identify viral integration sites from formalin-fixed, paraffin-embedded tissue.

    J Mol Diagn. 2011 May;13(3):325-33

    Authors: Duncavage EJ, Magrini V, Becker N, Armstrong JR, Demeter RT, Wylie T, Abel HJ, Pfeifer JD

    Although next-generation sequencing (NGS) has been the domain of large genome centers, it is quickly becoming more accessible to general pathology laboratories. In addition to finding single-base changes, NGS allows for the detection of larger structural variants, including insertions/deletions, translocations, and viral insertions. We describe the use of targeted NGS on DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tissue, and show that the short read lengths of NGS are ideally suited to fragmented DNA obtained from FFPE tissue. Further, we describe a novel method for performing hybrid-capture target enrichment using PCR-generated capture probes. As a model, we captured the 5.3-kb Merkel cell polyomavirus (MCPyV) genome in FFPE cases of Merkel cell carcinoma using inexpensive, PCR-derived capture probes, and achieved up to 37,000-fold coverage of the MCPyV genome without prior virus-specific PCR amplification. This depth of coverage made it possible to reproducibly detect viral genome deletions and insertion sites anywhere within the human genome. Out of four cases sequenced, we identified the 5' insertion sites in four of four cases and the 3' sites in three of four cases. These findings demonstrate the potential for an inexpensive gene targeting and NGS method that can be easily adapted for use with FFPE tissue to identify large structural rearrangements, opening up the possibility for further discovery from archival tissue.

    PMID: 21497292 [PubMed - indexed for MEDLINE]



    More...

Latest Articles

Collapse

  • seqadmin
    Essential Discoveries and Tools in Epitranscriptomics
    by seqadmin




    The field of epigenetics has traditionally concentrated more on DNA and how changes like methylation and phosphorylation of histones impact gene expression and regulation. However, our increased understanding of RNA modifications and their importance in cellular processes has led to a rise in epitranscriptomics research. “Epitranscriptomics brings together the concepts of epigenetics and gene expression,” explained Adrien Leger, PhD, Principal Research Scientist...
    04-22-2024, 07:01 AM
  • seqadmin
    Current Approaches to Protein Sequencing
    by seqadmin


    Proteins are often described as the workhorses of the cell, and identifying their sequences is key to understanding their role in biological processes and disease. Currently, the most common technique used to determine protein sequences is mass spectrometry. While still a valuable tool, mass spectrometry faces several limitations and requires a highly experienced scientist familiar with the equipment to operate it. Additionally, other proteomic methods, like affinity assays, are constrained...
    04-04-2024, 04:25 PM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, Today, 08:47 AM
0 responses
12 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-11-2024, 12:08 PM
0 responses
60 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 10:19 PM
0 responses
59 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 09:21 AM
0 responses
54 views
0 likes
Last Post seqadmin  
Working...
X