SEQanswers

Go Back   SEQanswers > Bioinformatics > Bioinformatics



Similar Threads
Thread Thread Starter Forum Replies Last Post
DESeq2 error in data.frame (multiple treatments and multiple replicates) KYR Bioinformatics 3 03-19-2019 09:05 AM
Multiple comparisons using DESeq2 johnU Bioinformatics 0 08-09-2017 12:16 PM
comparison of DESeq, DESeq2 and edgeR jay2008 Bioinformatics 3 02-14-2016 11:38 PM
[DESeq2] Multiple replicates, multiple treatments KYR Bioinformatics 4 08-02-2014 06:01 AM
DESeq2 multiple levels id0 Bioinformatics 3 05-30-2014 11:31 AM

Reply
 
Thread Tools
Old 01-09-2019, 06:39 AM   #1
dazhudou1122
Junior Member
 
Location: UTSW

Join Date: Aug 2016
Posts: 3
Default DESeq2 multiple comparison

Dear Seqanswers community:

I ran into a question when I was doing RNA-seq analysis using DeSEQ2. I have 4 groups, 3 samples per group, and set my groups using the following code:

(condition <- factor(c(rep("ctl", 3), rep("A", 3), rep("B", 3), rep("C", 3))))

Can anyone tell me how the comparison in DeSEQ2 is done? I am not sure what the p value and log2FC mean in the default output. Supposedly it should be outputting ctl vs A in the default output. But the data is different when I have only ctl and A as input (2 groups). Also, is there a way to specify how the program performs the comparison? I read some previous threads but the answers were not very clear. Any help will be highly appreciated!

Best,

Wenhan

Below is the code I used:

countdata <- read.table("B6_B6MHV_B6MHVWY.txt", header=TRUE, row.names=1)
countdata <- countdata[ ,6:ncol(countdata)]
colnames(countdata) <- gsub("\\.[sb]am$", "", colnames(countdata))
countdata <- as.matrix(countdata)
head(countdata)
(condition <- factor(c(rep("ctl", 3), rep("A", 3), rep("B", 3), rep("C", 3))))
library(DESeq2)
(coldata <- data.frame(row.names=colnames(countdata), condition))
dds <- DESeqDataSetFromMatrix(countData=countdata, colData=coldata, design=~condition)
dds
dds <- DESeq(dds)
# Plot
dispersions
png("qc-dispersions.png", 2000, 2000, pointsize=20)
plotDispEsts(dds, main="Dispersion plot")
dev.off()

# Regularized log transformation for clustering/heatmaps, etc
rld <- rlogTransformation(dds)
head(assay(rld))
hist(assay(rld))

# Colors for plots below
## Ugly:
## (mycols <- 1:length(unique(condition)))
## Use RColorBrewer, better
library(RColorBrewer)
(mycols <- brewer.pal(8, "Dark2")[1:length(unique(condition))])

# Sample distance heatmap
sampleDists <- as.matrix(dist(t(assay(rld))))
library(gplots)
png("qc-heatmap-samples.png", w=1500, h=2500, pointsize=1500)
heatmap.2(as.matrix(sampleDists), key=F, trace="none",
col=colorpanel(100, "black", "white"),
ColSideColors=mycols[condition], RowSideColors=mycols[condition],
margin=c(10, 10), main="Sample Distance Matrix")
dev.off()

# Principal components analysis
## Could do with built-in DESeq2 function:
## DESeq2:lotPCA(rld, intgroup="condition")
## I like mine better:
rld_pca <- function (rld, intgroup = "condition", ntop = 500, colors=NULL, legendpos="bottomleft", main="PCA Biplot", textcx=1, ...) {
require(genefilter)
require(calibrate)
require(RColorBrewer)
rv = rowVars(assay(rld))
select = order(rv, decreasing = TRUE)[seq_len(min(ntop, length(rv)))]
pca = prcomp(t(assay(rld)[select, ]))
fac = factor(apply(as.data.frame(colData(rld)[, intgroup, drop = FALSE]), 1, paste, collapse = " : "))
if (is.null(colors)) {
if (nlevels(fac) >= 3) {
colors = brewer.pal(nlevels(fac), "Paired")
} else {
colors = c("black", "red")
}
}
pc1var <- round(summary(pca)$importance[2,1]*100, digits=1)
pc2var <- round(summary(pca)$importance[2,2]*100, digits=1)
pc1lab <- paste0("PC1 (",as.character(pc1var),"%)")
pc2lab <- paste0("PC1 (",as.character(pc2var),"%)")
plot(PC2~PC1, data=as.data.frame(pca$x), bg=colors[fac], pch=21, xlab=pc1lab, ylab=pc2lab, main=main, ...)
with(as.data.frame(pca$x), textxy(PC1, PC2, labs=rownames(as.data.frame(pca$x)), cex=textcx))
legend(legendpos, legend=levels(fac), col=colors, pch=20)
# rldyplot(PC2 ~ PC1, groups = fac, data = as.data.frame(pca$rld),
# pch = 16, cerld = 2, aspect = "iso", col = colours, main = draw.key(key = list(rect = list(col = colours),
# terldt = list(levels(fac)), rep = FALSE)))
}
png("qc-pca.png", 1500, 1500, pointsize=25)
rld_pca(rld, colors=mycols, intgroup="condition", xlim=c(-75, 35))
dev.off()


# Get differential expression results
res <- results(dds)
table(res$padj<0.05)
## Order by adjusted p-value
res <- res[order(res$padj), ]
## Merge with normalized count data
resdata <- merge(as.data.frame(res), as.data.frame(counts(dds, normalized=TRUE)), by="row.names", sort=FALSE)
names(resdata)[1] <- "Gene"
head(resdata)
## Write results
write.csv(resdata, file="diffexpr-results.csv")
dazhudou1122 is offline   Reply With Quote
Old 03-25-2019, 08:28 AM   #2
luminasapientiae
Junior Member
 
Location: Brazil

Join Date: Sep 2017
Posts: 5
Default

There is a problem with this kind of analysis from statistical point of view. (more than two groups)
In practice, DESEq2 use a chi-squared like strategy and a binominal test, the analysis is better when you have one vs another group. In the other hand, edgeR is cappable to make this strategy works, but in their own manual this is not advisable and still in test phase, since you can have an "inflation" and false tendency of result. In other words: the logic in RNA-Seq still working in a 2D universe (difference of A-B) and you are talking about 3D (difference of A-B-C).

In my opinion, you should produce different DGEs crossing the groups (with the same control group if possible) and use a Venn diagram to identify the common findings.

Last edited by luminasapientiae; 03-25-2019 at 08:31 AM.
luminasapientiae is offline   Reply With Quote
Reply

Tags
deseq2, rna seq

Thread Tools

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off




All times are GMT -8. The time now is 02:15 AM.


Powered by vBulletin® Version 3.8.9
Copyright ©2000 - 2019, vBulletin Solutions, Inc.
Single Sign On provided by vBSSO