Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • ChIP-Seq: Identifying Differential Histone Modification Sites from ChIP-seq Data.

    Syndicated from PubMed RSS Feeds

    Identifying Differential Histone Modification Sites from ChIP-seq Data.

    Methods Mol Biol. 2012;802:293-303

    Authors: Xu H, Sung WK

    Abstract
    Epigenetic modifications are critical to gene regulations and genome functions. Among different epigenetic modifications, it is of great interest to study the differential histone modification sites (DHMSs), which contribute to the epigenetic dynamics and the gene regulations among various cell-types or environmental responses. ChIP-seq is a robust and comprehensive approach to capture the histone modifications at the whole genome scale. By comparing two histone modification ChIP-seq libraries, the DHMSs are potentially identifiable. With this aim, we proposed an approach called ChIPDiff for the genome-wide comparison of histone modification sites identified by ChIP-seq (Xu, Wei, Lin et al., Bioinformatics 24:2344-2349, 2008). The approach employs a hidden Markov model (HMM) to infer the states of histone modification changes at each genomic location. We evaluated the performance of ChIPDiff by comparing the H3K27me3 modification sites between mouse embryonic stem cell (ESC) and neural progenitor cell (NPC). We demonstrated that the H3K27me3 DHMSs identified by our approach are of high sensitivity, specificity, and technical reproducibility. ChIPDiff was further applied to uncover the differential H3K4me3 and H3K36me3 sites between different cell states. The result showed significant correlation between the histone modification states and the gene expression levels.


    PMID: 22130888 [PubMed - in process]



    More...

Latest Articles

Collapse

  • seqadmin
    Current Approaches to Protein Sequencing
    by seqadmin


    Proteins are often described as the workhorses of the cell, and identifying their sequences is key to understanding their role in biological processes and disease. Currently, the most common technique used to determine protein sequences is mass spectrometry. While still a valuable tool, mass spectrometry faces several limitations and requires a highly experienced scientist familiar with the equipment to operate it. Additionally, other proteomic methods, like affinity assays, are constrained...
    04-04-2024, 04:25 PM
  • seqadmin
    Strategies for Sequencing Challenging Samples
    by seqadmin


    Despite advancements in sequencing platforms and related sample preparation technologies, certain sample types continue to present significant challenges that can compromise sequencing results. Pedro Echave, Senior Manager of the Global Business Segment at Revvity, explained that the success of a sequencing experiment ultimately depends on the amount and integrity of the nucleic acid template (RNA or DNA) obtained from a sample. “The better the quality of the nucleic acid isolated...
    03-22-2024, 06:39 AM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, 04-11-2024, 12:08 PM
0 responses
25 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 10:19 PM
0 responses
27 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 09:21 AM
0 responses
24 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-04-2024, 09:00 AM
0 responses
52 views
0 likes
Last Post seqadmin  
Working...
X