Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • PubMed: Metagenomic Analysis of the Viral Community in Fermented Foods.

    Syndicated from PubMed RSS Feeds

    Metagenomic Analysis of the Viral Community in Fermented Foods.

    Appl Environ Microbiol. 2010 Dec 23;

    Authors: Park EJ, Kim KH, Abell GC, Kim MS, Roh SW, Bae JW

    Viruses are recognized as the most abundant biological components on Earth and they regulate the structure of microbial communities in many environments. In soil and marine environments, microorganisms-infecting phages are the most common type of virus. Although several types of bacteriophage have been isolated from fermented foods, little is known about the overall viral assemblages (viromes) of these environments. In this study, metagenomic analyses were performed on the uncultivated viral communities from three fermented foods, fermented shrimp, kimchi and sauerkraut. Using a high-throughput pyrosequencing technique, a total of 81,831, 70,591 and 69,464 viral sequences were obtained from fermented shrimp, kimchi and sauerkraut, respectively. Moreover, 37-50% of these sequences showed no significant hit against sequences in public databases. There were some discrepancies between the prediction of bacteriophages hosts via homology comparison and bacterial distribution, as determined from 16S rRNA gene sequencing. These discrepancies likely reflect the fact that the viral genomes of fermented foods are poorly represented in public databases. Double-stranded DNA (dsDNA) viral communities were amplified from fermented foods using a linker-amplified shotgun library (LASL). These communities were dominated by bacteriophages belonging to the viral order Caudovirales (i.e., Myoviridae, Podoviridae and Siphoviridae). This study indicates that fermented foods contain less complex viral communities than many other environmental habitats such as seawater, human feces, marine sediment, and soil.

    PMID: 21183634 [PubMed - as supplied by publisher]



    More...

Latest Articles

Collapse

  • seqadmin
    Current Approaches to Protein Sequencing
    by seqadmin


    Proteins are often described as the workhorses of the cell, and identifying their sequences is key to understanding their role in biological processes and disease. Currently, the most common technique used to determine protein sequences is mass spectrometry. While still a valuable tool, mass spectrometry faces several limitations and requires a highly experienced scientist familiar with the equipment to operate it. Additionally, other proteomic methods, like affinity assays, are constrained...
    04-04-2024, 04:25 PM
  • seqadmin
    Strategies for Sequencing Challenging Samples
    by seqadmin


    Despite advancements in sequencing platforms and related sample preparation technologies, certain sample types continue to present significant challenges that can compromise sequencing results. Pedro Echave, Senior Manager of the Global Business Segment at Revvity, explained that the success of a sequencing experiment ultimately depends on the amount and integrity of the nucleic acid template (RNA or DNA) obtained from a sample. “The better the quality of the nucleic acid isolated...
    03-22-2024, 06:39 AM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, 04-11-2024, 12:08 PM
0 responses
25 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 10:19 PM
0 responses
29 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 09:21 AM
0 responses
25 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-04-2024, 09:00 AM
0 responses
52 views
0 likes
Last Post seqadmin  
Working...
X