Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • PubMed: Rapid transcriptome characterization for a nonmodel organism using 454 pyrosq

    Syndicated from PubMed RSS Feeds

    Related Articles Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing.
    Mol Ecol. 2008 Feb 5;
    Authors: Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH
    We present a de novo assembly of a eukaryote transcriptome using 454 pyrosequencing data. The Glanville fritillary butterfly (Melitaea cinxia; Lepidoptera: Nymphalidae) is a prominent species in population biology but had no previous genomic data. Sequencing runs using two normalized complementary DNA collections from a genetically diverse pool of larvae, pupae, and adults yielded 608 053 expressed sequence tags (mean length = 110 nucleotides), which assembled into 48 354 contigs (sets of overlapping DNA segments) and 59 943 singletons. blast comparisons confirmed the accuracy of the sequencing and assembly, and indicated the presence of c. 9000 unique genes, along with > 6000 additional microarray-confirmed unannotated contigs. Average depth of coverage was 6.5-fold for the longest 4800 contigs (348-2849 bp in length), sufficient for detecting large numbers of single nucleotide polymorphisms. Oligonucleotide microarray probes designed from the assembled sequences showed highly repeatable hybridization intensity and revealed biological differences among individuals. We conclude that 454 sequencing, when performed to provide sufficient coverage depth, allows de novo transcriptome assembly and a fast, cost-effective, and reliable method for development of functional genomic tools for nonmodel species. This development narrows the gap between approaches based on model organisms with rich genetic resources vs. species that are most tractable for ecological and evolutionary studies.
    PMID: 18266620 [PubMed - as supplied by publisher]


    More...

Latest Articles

Collapse

  • seqadmin
    Current Approaches to Protein Sequencing
    by seqadmin


    Proteins are often described as the workhorses of the cell, and identifying their sequences is key to understanding their role in biological processes and disease. Currently, the most common technique used to determine protein sequences is mass spectrometry. While still a valuable tool, mass spectrometry faces several limitations and requires a highly experienced scientist familiar with the equipment to operate it. Additionally, other proteomic methods, like affinity assays, are constrained...
    04-04-2024, 04:25 PM
  • seqadmin
    Strategies for Sequencing Challenging Samples
    by seqadmin


    Despite advancements in sequencing platforms and related sample preparation technologies, certain sample types continue to present significant challenges that can compromise sequencing results. Pedro Echave, Senior Manager of the Global Business Segment at Revvity, explained that the success of a sequencing experiment ultimately depends on the amount and integrity of the nucleic acid template (RNA or DNA) obtained from a sample. “The better the quality of the nucleic acid isolated...
    03-22-2024, 06:39 AM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, 04-11-2024, 12:08 PM
0 responses
27 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 10:19 PM
0 responses
30 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 09:21 AM
0 responses
26 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-04-2024, 09:00 AM
0 responses
52 views
0 likes
Last Post seqadmin  
Working...
X