Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • How to Analyze Single Cell RNA-Seq Data: Point, Click, Done

    Single cell mRNA sequencing allows for the identification of different cell subtypes in a progenitor population. During pancreatic development, Neurog3 positive cells are destined to become endocrine cells generating alpha cells, beta cells, and delta cells. However, single cell data analyses can be challenging for those without programming or command line experience. Partek® Flow® bioinformatic software resolves this challenge with a simple and intuitive graphical interface that doesn’t sacrifice flexibility or statistical power.

    In this webinar scientists from 1CellBio and Partek will discuss how you can use the inDrop™ platform and Partek Flow to simplify single cell RNA-Seq analysis. There will be a live demonstration of Partek Flow using an inDrop single cell mRNA sequencing dataset.

    June 24, 2020
    11:00 a.m. EDT
    REGISTER

    You will learn how to:
    • identify cellular subtypes of Neurog3 positive cells
    • use information-rich and interactive visualizations to identify graph-based clustering and cluster classification
    • perform trajectory analysis of Neurog 3 positive cells

Latest Articles

Collapse

  • seqadmin
    Essential Discoveries and Tools in Epitranscriptomics
    by seqadmin


    The field of epigenetics has traditionally concentrated more on DNA and how changes like methylation and phosphorylation of histones impact gene expression and regulation. However, our increased understanding of RNA modifications and their importance in cellular processes has led to a rise in epitranscriptomics research. “Epitranscriptomics brings together the concepts of epigenetics and gene expression,” explained Adrien Leger, PhD, Principal Research Scientist on Modified Bases...
    Yesterday, 07:01 AM
  • seqadmin
    Current Approaches to Protein Sequencing
    by seqadmin


    Proteins are often described as the workhorses of the cell, and identifying their sequences is key to understanding their role in biological processes and disease. Currently, the most common technique used to determine protein sequences is mass spectrometry. While still a valuable tool, mass spectrometry faces several limitations and requires a highly experienced scientist familiar with the equipment to operate it. Additionally, other proteomic methods, like affinity assays, are constrained...
    04-04-2024, 04:25 PM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, 04-11-2024, 12:08 PM
0 responses
55 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 10:19 PM
0 responses
52 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 09:21 AM
0 responses
45 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-04-2024, 09:00 AM
0 responses
55 views
0 likes
Last Post seqadmin  
Working...
X