Go Back   SEQanswers > Bioinformatics > Bioinformatics

Similar Threads
Thread Thread Starter Forum Replies Last Post
Merging 16S reads with FLASH - parameters? cheezemeister Bioinformatics 6 07-15-2016 12:10 PM
Is excluding a whole chromosome a valid independent filter for DESeq2? Skiaphrene Bioinformatics 2 04-30-2015 01:37 PM
DESeq2 - finding influence of multiple parameters MagdalenaZ Bioinformatics 2 03-31-2015 10:13 AM
Deseq2 16S copy number Manoeli Lupatini Bioinformatics 1 04-26-2014 04:05 AM
Valid tools to use for Detecting SV/CNV in Whole Exome Data variadevang Bioinformatics 3 02-11-2014 12:56 PM

Thread Tools
Old 01-06-2017, 06:31 AM   #1
Junior Member
Location: London

Join Date: Jan 2017
Posts: 4
Question Using DeSeq2 with 16s data, valid parameters


I am trying to use DeSeq2 in R to analyse differential abundance between 16s samples at OTU level. However I am not sure if the code I am using is valid for what I want to do. Codes comes from the phyloseq tutorial.

My data is 16s data (Illumima MiSeq), collected from birds with different caecal lesion scores (0, 1, 2, 3, 4) and uninfected controls, for each I have <10 biological replicates per group. What I am interested in doing in comparing abundance of OTUs across groups.

I do as below to load my data into the matrix and then to ensure that I only have two groups (eg. 4 & uninfected) for comparison I remove the other groups using the subset option. Then run the code below.

My question is, is subsetting like this still allowing the program to take all of the data, even that which isn't being compared, into account?

Secondly am I struggling to know which parameters to use for this type of data with DeSeq2. Can I simply implement what is done for RnaSeq data here to look for differentially abundant OTUs or is this wrong completely? I am not sure which fitType to use; parametric or local or which test to use; Wald or LRT? Doing comparisons there is not much difference in the data, but would be good to know which is best to use.

The reason I am using DeSeq2 is because I have a small data set, min of 8 biological replicates, max of 11 biological replicates per group.

Having read the package manual I am still unclear.

qiimedata = import_qiime(otufile, mapfile, trefile)

qiimedata = subset_samples(qiimedata, LesionScore != "0")
qiimedata = subset_samples(qiimedata, LesionScore != "1")
qiimedata = subset_samples(qiimedata, LesionScore != "2")
qiimedata = subset_samples(qiimedata, LesionScore != "3")

diagdds = phyloseq_to_deseq2(qiimedata, ~ LesionScore)
diagdds = DESeq(diagdds, test="Wald", fitType="parametric")

res = results(diagdds, cooksCutoff = FALSE)
alpha = 0.05
sigtab = res[which(res$padj < alpha), ]
sigtab = cbind(as(sigtab, "data.frame"), as(tax_table(qiimedata)[rownames(sigtab), ], "matrix"))
sigtabOrdered <- sigtab[order(sigtab$padj),]

Any help would be great

Last edited by sarah_27_m; 01-06-2017 at 06:54 AM.
sarah_27_m is offline   Reply With Quote
Old 01-11-2017, 05:46 AM   #2
Junior Member
Location: London

Join Date: Jan 2017
Posts: 4

The answer to part of my question, this demonstrates that microbiome count data from amplicon sequencing experiments can be treated with the same procedures as for differential expression data from RNA-Seq experiments.
sarah_27_m is offline   Reply With Quote


Thread Tools

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

All times are GMT -8. The time now is 04:35 AM.

Powered by vBulletin® Version 3.8.9
Copyright ©2000 - 2019, vBulletin Solutions, Inc.
Single Sign On provided by vBSSO