Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • PubMed: Expanding DNA diagnostic panel testing: is more better?

    Syndicated from PubMed RSS Feeds

    Expanding DNA diagnostic panel testing: is more better?

    Expert Rev Mol Diagn. 2011 Sep;11(7):703-9

    Authors: Klee EW, Hoppman-Chaney NL, Ferber MJ

    Abstract
    During the last 25 years, a small number of meaningful DNA-based diagnostic tests have been available to aid in the diagnosis and subsequent treatment of heritable disorders. These tests have targeted a limited number of genes and are often ordered in serial testing strategies in which results from one preliminary test dictate the subsequent test orders. This approach can be both time and resource intensive when a patient requires several genes to be sequenced. Recently, there has been much discussion regarding how 'massively parallel' or 'next-generation' DNA sequencing will impact clinical care. While the technology promises to reduce the cost of sequencing an entire human genome to less than US$1000, one must question the diagnostic utility of complete genome sequencing for routine clinical testing, given the many interpretive challenges posed by this approach. At present, it appears next-generation DNA sequencing may provide the greatest benefit to routine clinical testing by enabling comprehensive multigene panel sequencing. This should provide an advantage over traditional Sanger-based sequencing strategies while limiting the total test output to sets to genes with known diagnostic value. This article will discuss the current and near future state of clinical testing approaches and explore what challenges must be addressed in order to extract diagnostic value from whole-exome sequencing and whole-genome sequencing, using hereditary colon cancer as an example.


    PMID: 21902532 [PubMed - in process]



    More...

Latest Articles

Collapse

  • seqadmin
    Current Approaches to Protein Sequencing
    by seqadmin


    Proteins are often described as the workhorses of the cell, and identifying their sequences is key to understanding their role in biological processes and disease. Currently, the most common technique used to determine protein sequences is mass spectrometry. While still a valuable tool, mass spectrometry faces several limitations and requires a highly experienced scientist familiar with the equipment to operate it. Additionally, other proteomic methods, like affinity assays, are constrained...
    04-04-2024, 04:25 PM
  • seqadmin
    Strategies for Sequencing Challenging Samples
    by seqadmin


    Despite advancements in sequencing platforms and related sample preparation technologies, certain sample types continue to present significant challenges that can compromise sequencing results. Pedro Echave, Senior Manager of the Global Business Segment at Revvity, explained that the success of a sequencing experiment ultimately depends on the amount and integrity of the nucleic acid template (RNA or DNA) obtained from a sample. “The better the quality of the nucleic acid isolated...
    03-22-2024, 06:39 AM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, 04-11-2024, 12:08 PM
0 responses
30 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 10:19 PM
0 responses
32 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 09:21 AM
0 responses
28 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-04-2024, 09:00 AM
0 responses
53 views
0 likes
Last Post seqadmin  
Working...
X