Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • PubMed: De novo assembly of short sequence reads.

    Syndicated from PubMed RSS Feeds

    De novo assembly of short sequence reads.

    Brief Bioinform. 2010 Aug 19;

    Authors: Paszkiewicz K, Studholme DJ

    A new generation of sequencing technologies is revolutionizing molecular biology. Illumina's Solexa and Applied Biosystems' SOLiD generate gigabases of nucleotide sequence per week. However, a perceived limitation of these ultra-high-throughput technologies is their short read-lengths. De novo assembly of sequence reads generated by classical Sanger capillary sequencing is a mature field of research. Unfortunately, the existing sequence assembly programs were not effective for short sequence reads generated by Illumina and SOLiD platforms. Early studies suggested that, in principle, sequence reads as short as 20-30 nucleotides could be used to generate useful assemblies of both prokaryotic and eukaryotic genome sequences, albeit containing many gaps. The early feasibility studies and proofs of principle inspired several bioinformatics research groups to implement new algorithms as freely available software tools specifically aimed at assembling reads of 30-50 nucleotides in length. This has led to the generation of several draft genome sequences based exclusively on short sequence Illumina sequence reads, recently culminating in the assembly of the 2.25-Gb genome of the giant panda from Illumina sequence reads with an average length of just 52 nucleotides. As well as reviewing recent developments in the field, we discuss some practical aspects such as data filtering and submission of assembly data to public repositories.

    PMID: 20724458 [PubMed - as supplied by publisher]



    More...

Latest Articles

Collapse

  • seqadmin
    Current Approaches to Protein Sequencing
    by seqadmin


    Proteins are often described as the workhorses of the cell, and identifying their sequences is key to understanding their role in biological processes and disease. Currently, the most common technique used to determine protein sequences is mass spectrometry. While still a valuable tool, mass spectrometry faces several limitations and requires a highly experienced scientist familiar with the equipment to operate it. Additionally, other proteomic methods, like affinity assays, are constrained...
    04-04-2024, 04:25 PM
  • seqadmin
    Strategies for Sequencing Challenging Samples
    by seqadmin


    Despite advancements in sequencing platforms and related sample preparation technologies, certain sample types continue to present significant challenges that can compromise sequencing results. Pedro Echave, Senior Manager of the Global Business Segment at Revvity, explained that the success of a sequencing experiment ultimately depends on the amount and integrity of the nucleic acid template (RNA or DNA) obtained from a sample. “The better the quality of the nucleic acid isolated...
    03-22-2024, 06:39 AM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, 04-11-2024, 12:08 PM
0 responses
24 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 10:19 PM
0 responses
25 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 09:21 AM
0 responses
21 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-04-2024, 09:00 AM
0 responses
52 views
0 likes
Last Post seqadmin  
Working...
X