Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • ChIP-Seq: Genome-wide conserved consensus transcription factor binding motifs are hyp

    Syndicated from PubMed RSS Feeds

    Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated.

    BMC Genomics. 2010 Sep 27;11(1):519

    Authors: Choy MK, Movassagh M, Goh HG, Bennett MR, Down TA, Foo RS

    ABSTRACT: BACKGROUND: DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS") but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq) not to be biological transcription factor binding sites ("empirical TFBS"). We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. RESULTS: Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40 % of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7 % of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. CONCLUSIONS: Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation.

    PMID: 20875111 [PubMed - as supplied by publisher]



    More...

Latest Articles

Collapse

  • seqadmin
    Essential Discoveries and Tools in Epitranscriptomics
    by seqadmin




    The field of epigenetics has traditionally concentrated more on DNA and how changes like methylation and phosphorylation of histones impact gene expression and regulation. However, our increased understanding of RNA modifications and their importance in cellular processes has led to a rise in epitranscriptomics research. “Epitranscriptomics brings together the concepts of epigenetics and gene expression,” explained Adrien Leger, PhD, Principal Research Scientist...
    04-22-2024, 07:01 AM
  • seqadmin
    Current Approaches to Protein Sequencing
    by seqadmin


    Proteins are often described as the workhorses of the cell, and identifying their sequences is key to understanding their role in biological processes and disease. Currently, the most common technique used to determine protein sequences is mass spectrometry. While still a valuable tool, mass spectrometry faces several limitations and requires a highly experienced scientist familiar with the equipment to operate it. Additionally, other proteomic methods, like affinity assays, are constrained...
    04-04-2024, 04:25 PM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, Yesterday, 11:49 AM
0 responses
15 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-24-2024, 08:47 AM
0 responses
16 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-11-2024, 12:08 PM
0 responses
61 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 10:19 PM
0 responses
60 views
0 likes
Last Post seqadmin  
Working...
X