Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • RNA-Seq: Detection of splicing events and multiread locations from RNA-seq data based

    Syndicated from PubMed RSS Feeds

    Detection of splicing events and multiread locations from RNA-seq data based on a geometric-tail (GT) distribution of intron length.

    BMC Bioinformatics. 2011;12 Suppl 5:S2

    Authors: Lou SK, Li JW, Qin H, Yim AK, Lo LY, Ni B, Leung KS, Tsui SK, Chan TF

    Abstract
    BACKGROUND: RNA sequencing (RNA-seq) measures gene expression levels and permits splicing analysis. Many existing aligners are capable of mapping millions of sequencing reads onto a reference genome. For reads that can be mapped to multiple positions along the reference genome (multireads), these aligners may either randomly assign them to a location, or discard them altogether. Either way could bias downstream analyses. Meanwhile, challenges remain in the alignment of reads spanning across splice junctions. Existing splicing-aware aligners that rely on the read-count method in identifying junction sites are inevitably affected by sequencing depths.
    RESULTS: The distance between aligned positions of paired-end (PE) reads or two parts of a spliced read is dependent on the experiment protocol and gene structures. We here proposed a new method that employs an empirical geometric-tail (GT) distribution of intron lengths to make a rational choice in multireads selection and splice-sites detection, according to the aligned distances from PE and sliced reads.
    CONCLUSIONS: GT models that combine sequence similarity from alignment, and together with the probability of length distribution, could accurately determine the location of both multireads and spliced reads.


    PMID: 21988959 [PubMed - in process]



    More...

Latest Articles

Collapse

  • seqadmin
    Current Approaches to Protein Sequencing
    by seqadmin


    Proteins are often described as the workhorses of the cell, and identifying their sequences is key to understanding their role in biological processes and disease. Currently, the most common technique used to determine protein sequences is mass spectrometry. While still a valuable tool, mass spectrometry faces several limitations and requires a highly experienced scientist familiar with the equipment to operate it. Additionally, other proteomic methods, like affinity assays, are constrained...
    04-04-2024, 04:25 PM
  • seqadmin
    Strategies for Sequencing Challenging Samples
    by seqadmin


    Despite advancements in sequencing platforms and related sample preparation technologies, certain sample types continue to present significant challenges that can compromise sequencing results. Pedro Echave, Senior Manager of the Global Business Segment at Revvity, explained that the success of a sequencing experiment ultimately depends on the amount and integrity of the nucleic acid template (RNA or DNA) obtained from a sample. “The better the quality of the nucleic acid isolated...
    03-22-2024, 06:39 AM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, 04-11-2024, 12:08 PM
0 responses
23 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 10:19 PM
0 responses
24 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 09:21 AM
0 responses
20 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-04-2024, 09:00 AM
0 responses
52 views
0 likes
Last Post seqadmin  
Working...
X