Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Identification of Genomic Repeats and Sample Contamination in Assemblies of 454 Pyros

    Identification and Quantification of Genomic Repeats and Sample Contamination in Assemblies of 454 Pyrosequencing Reads

    AJ Nederbragt, TB Rounge, K. Kausrud, and KS Jakobsen

    Contigs assembled from 454 reads from bacterial genomes demonstrate a range of read depths, with a number of contigs having a depth that is far higher than can be expected. For reference genome sequence datasets, there exists a high correlation between the contig specific read depth and the number of copies present in the genome. We developed a sequence of applied statistical analyses, which suggest that the number of copies present can be reliably estimated based on the read depth distribution in de novo genome assemblies. Read depths of contigs of de novo cyanobacterial genome assemblies were determined, and several high read depth contigs were identified. These contigs were shown to mainly contain genes that are known to be present in multiple copies in bacterial genomes. For these assemblies, a correlation between read depth and copy number was experimentally demonstrated using real-time PCR. Copy number estimates, obtained using the statistical analysis developed in this work, are presented. Per-contig read depth analysis of assemblies based on 454 reads therefore enables de novo detection of genomic repeats and estimation of the copy number of these repeats.
    Additionally, our analysis efficiently identified contigs stemming from sample contamination, allowing for their removal from the assembly.

    Peer-reviewed, open access journals for science, technology, social science and medicine. Indexed in the leading abstracting and indexing databases.


    DISCLAIMER I am the lead author on this paper

Latest Articles

Collapse

  • seqadmin
    Current Approaches to Protein Sequencing
    by seqadmin


    Proteins are often described as the workhorses of the cell, and identifying their sequences is key to understanding their role in biological processes and disease. Currently, the most common technique used to determine protein sequences is mass spectrometry. While still a valuable tool, mass spectrometry faces several limitations and requires a highly experienced scientist familiar with the equipment to operate it. Additionally, other proteomic methods, like affinity assays, are constrained...
    04-04-2024, 04:25 PM
  • seqadmin
    Strategies for Sequencing Challenging Samples
    by seqadmin


    Despite advancements in sequencing platforms and related sample preparation technologies, certain sample types continue to present significant challenges that can compromise sequencing results. Pedro Echave, Senior Manager of the Global Business Segment at Revvity, explained that the success of a sequencing experiment ultimately depends on the amount and integrity of the nucleic acid template (RNA or DNA) obtained from a sample. “The better the quality of the nucleic acid isolated...
    03-22-2024, 06:39 AM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, 04-11-2024, 12:08 PM
0 responses
30 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 10:19 PM
0 responses
32 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 09:21 AM
0 responses
28 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-04-2024, 09:00 AM
0 responses
53 views
0 likes
Last Post seqadmin  
Working...
X