Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • variability in sequences of a gene

    Hi All!

    I downloaded V1-V2 hypervariable region of 16S sequence data of Fusobacterium sequenced by 454. I was expecting taht all the reads to be identical as it is one gene of single species but the reads are different. I want to know if this should be the case that there is variability in the sequences of single gene or all the sequences should be identical.
    Any kind of help will be appreciated.

    Thanks!!

  • #2
    Bacteria have multiple 16S copies, and those copies can differ substantially (by over 3%) within a single cell, depending on the species. It's rather amusing because by some metrics that makes a single cell a different species than itself.

    Comment


    • #3
      Originally posted by Brian Bushnell View Post
      Bacteria have multiple 16S copies, and those copies can differ substantially (by over 3%) within a single cell, depending on the species. It's rather amusing because by some metrics that makes a single cell a different species than itself.

      Thanks Brian for answering my question. Is there any reference that states that the variability
      is over 3%. I have to quote it in a report.

      Comment


      • #4
        Originally posted by bioinfobeginner View Post
        Thanks Brian for answering my question. Is there any reference that states that the variability
        is over 3%. I have to quote it in a report.
        I only remember it because it caused problems when clustering, as that 16S copy was more similar to a different species than to the other 16S of its own species. I don't remember the species name or the exact amount of difference, so I don't recommend quoting it. In most bacteria the difference was far less, but if I remember correctly, none that I looked at had all 100% identical 16S copies.

        Comment


        • #5
          This is the ref that Brian was probably remembering:
          16S ribosomal RNA currently represents the most important target of study in bacterial ecology. Its use for the description of bacterial diversity is, however, limited by the presence of variable copy numbers in bacterial genomes and sequence variation within closely related taxa or within a genome. Here we use the information from sequenced bacterial genomes to explore the variability of 16S rRNA sequences and copy numbers at various taxonomic levels and apply it to estimate bacterial genome and DNA abundances. In total, 7,081 16S rRNA sequences were in silico extracted from 1,690 available bacterial genomes (1–15 per genome). While there are several phyla containing low 16S rRNA copy numbers, in certain taxa, e.g., the Firmicutes and Gammaproteobacteria, the variation is large. Genome sizes are more conserved at all tested taxonomic levels than 16S rRNA copy numbers. Only a minority of bacterial genomes harbors identical 16S rRNA gene copies, and sequence diversity increases with increasing copy numbers. While certain taxa harbor dissimilar 16S rRNA genes, others contain sequences common to multiple species. Sequence identity clusters (often termed operational taxonomic units) thus provide an imperfect representation of bacterial taxa of a certain phylogenetic rank. We have demonstrated that the information on 16S rRNA copy numbers and genome sizes of genome-sequenced bacteria may be used as an estimate for the closest related taxon in an environmental dataset to calculate alternative estimates of the relative abundance of individual bacterial taxa in environmental samples. Using an example from forest soil, this procedure would increase the abundance estimates of Acidobacteria and decrease these of Firmicutes. Using the currently available information, alternative estimates of bacterial community composition may be obtained in this way if the variation of 16S rRNA copy numbers among bacteria is considered.


          "The level of dissimilarity within a genome can be relatively high: fourteen genomes contained at least one pair of 16S rRNA sequences with a similarity below 97%"

          However, most are more similar:
          At a genome level, 19.8% of all genomes with more than one 16S rRNA copy harbor 2–5 identical 16S rRNA copies, and the average 16S rRNA similarity within a genome is 99.70±0.46%, with 97.6% of genomes showing average 16S rRNA similarity above 99%.
          Providing nextRAD genotyping and PacBio sequencing services. http://snpsaurus.com

          Comment


          • #6
            Originally posted by SNPsaurus View Post
            This is the ref that Brian was probably remembering:
            16S ribosomal RNA currently represents the most important target of study in bacterial ecology. Its use for the description of bacterial diversity is, however, limited by the presence of variable copy numbers in bacterial genomes and sequence variation within closely related taxa or within a genome. Here we use the information from sequenced bacterial genomes to explore the variability of 16S rRNA sequences and copy numbers at various taxonomic levels and apply it to estimate bacterial genome and DNA abundances. In total, 7,081 16S rRNA sequences were in silico extracted from 1,690 available bacterial genomes (1–15 per genome). While there are several phyla containing low 16S rRNA copy numbers, in certain taxa, e.g., the Firmicutes and Gammaproteobacteria, the variation is large. Genome sizes are more conserved at all tested taxonomic levels than 16S rRNA copy numbers. Only a minority of bacterial genomes harbors identical 16S rRNA gene copies, and sequence diversity increases with increasing copy numbers. While certain taxa harbor dissimilar 16S rRNA genes, others contain sequences common to multiple species. Sequence identity clusters (often termed operational taxonomic units) thus provide an imperfect representation of bacterial taxa of a certain phylogenetic rank. We have demonstrated that the information on 16S rRNA copy numbers and genome sizes of genome-sequenced bacteria may be used as an estimate for the closest related taxon in an environmental dataset to calculate alternative estimates of the relative abundance of individual bacterial taxa in environmental samples. Using an example from forest soil, this procedure would increase the abundance estimates of Acidobacteria and decrease these of Firmicutes. Using the currently available information, alternative estimates of bacterial community composition may be obtained in this way if the variation of 16S rRNA copy numbers among bacteria is considered.


            "The level of dissimilarity within a genome can be relatively high: fourteen genomes contained at least one pair of 16S rRNA sequences with a similarity below 97%"

            However, most are more similar:
            At a genome level, 19.8% of all genomes with more than one 16S rRNA copy harbor 2–5 identical 16S rRNA copies, and the average 16S rRNA similarity within a genome is 99.70±0.46%, with 97.6% of genomes showing average 16S rRNA similarity above 99%.
            Thanks SNPsaurus!

            I appreciate your help.

            Comment

            Latest Articles

            Collapse

            • seqadmin
              Essential Discoveries and Tools in Epitranscriptomics
              by seqadmin




              The field of epigenetics has traditionally concentrated more on DNA and how changes like methylation and phosphorylation of histones impact gene expression and regulation. However, our increased understanding of RNA modifications and their importance in cellular processes has led to a rise in epitranscriptomics research. “Epitranscriptomics brings together the concepts of epigenetics and gene expression,” explained Adrien Leger, PhD, Principal Research Scientist...
              04-22-2024, 07:01 AM
            • seqadmin
              Current Approaches to Protein Sequencing
              by seqadmin


              Proteins are often described as the workhorses of the cell, and identifying their sequences is key to understanding their role in biological processes and disease. Currently, the most common technique used to determine protein sequences is mass spectrometry. While still a valuable tool, mass spectrometry faces several limitations and requires a highly experienced scientist familiar with the equipment to operate it. Additionally, other proteomic methods, like affinity assays, are constrained...
              04-04-2024, 04:25 PM

            ad_right_rmr

            Collapse

            News

            Collapse

            Topics Statistics Last Post
            Started by seqadmin, Yesterday, 11:49 AM
            0 responses
            15 views
            0 likes
            Last Post seqadmin  
            Started by seqadmin, 04-24-2024, 08:47 AM
            0 responses
            16 views
            0 likes
            Last Post seqadmin  
            Started by seqadmin, 04-11-2024, 12:08 PM
            0 responses
            61 views
            0 likes
            Last Post seqadmin  
            Started by seqadmin, 04-10-2024, 10:19 PM
            0 responses
            60 views
            0 likes
            Last Post seqadmin  
            Working...
            X