Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • #31
    Originally posted by captainentropy View Post
    @mudshark. You've tried quite a few programs. More than I have. Since I use QuEST the most could you tell me why you think it doesn't perform well? Did you use default or advanced parameter settings? This paper found most peak-calling programs to have high agreement between high-value peaks and qPCR verification data http://www.plosone.org/article/info:...l.pone.0011471
    based on my prior-knowledge system i can do a very good performance estimation of the tools. basically i know all the binding sites genome-wide without having to do ChIP mappings.

    of course, I am working in Drosophila and QuEST e.g. has been 'optimized' for mouse/human whatever that means. but in essence, QuEST has a very low sensitivity and given the low sensitivity a rather bad specificity COMPARED to other tools such as SICER, spp, and MACS.

    my experience.. other people might have a different one.

    (and of course i find QuEST very poorly documented - what are the advanced parameters?)

    Comment


    • #32
      mudshark, if you include the "-advanced" option in the QuEST command you will have the option to configure all of the parameters such as bandwidth, region size, mappable genome fraction, ChIP enrichment, peak shift, etc. You can also control the peak collapsing parameters too.

      I recommend using the advanced option and at a minimum change the mappable genome fraction to something more accurate. The fraction is a function of the read length and percentage of mappable sequence (i.e. the non-repetitive sequences) for your genome. The longer the read length the larger the mappable fraction. The default in QuEST is 0.75 which (for hg18) corresponds to a readlength of 26nt. We are getting read lengths of 38nt and longer which increases the fraction to 0.82 and up. Using this number has resulted in a noticeable increase in number of peaks called.

      Comment

      Latest Articles

      Collapse

      • seqadmin
        Current Approaches to Protein Sequencing
        by seqadmin


        Proteins are often described as the workhorses of the cell, and identifying their sequences is key to understanding their role in biological processes and disease. Currently, the most common technique used to determine protein sequences is mass spectrometry. While still a valuable tool, mass spectrometry faces several limitations and requires a highly experienced scientist familiar with the equipment to operate it. Additionally, other proteomic methods, like affinity assays, are constrained...
        04-04-2024, 04:25 PM
      • seqadmin
        Strategies for Sequencing Challenging Samples
        by seqadmin


        Despite advancements in sequencing platforms and related sample preparation technologies, certain sample types continue to present significant challenges that can compromise sequencing results. Pedro Echave, Senior Manager of the Global Business Segment at Revvity, explained that the success of a sequencing experiment ultimately depends on the amount and integrity of the nucleic acid template (RNA or DNA) obtained from a sample. “The better the quality of the nucleic acid isolated...
        03-22-2024, 06:39 AM

      ad_right_rmr

      Collapse

      News

      Collapse

      Topics Statistics Last Post
      Started by seqadmin, 04-11-2024, 12:08 PM
      0 responses
      27 views
      0 likes
      Last Post seqadmin  
      Started by seqadmin, 04-10-2024, 10:19 PM
      0 responses
      30 views
      0 likes
      Last Post seqadmin  
      Started by seqadmin, 04-10-2024, 09:21 AM
      0 responses
      26 views
      0 likes
      Last Post seqadmin  
      Started by seqadmin, 04-04-2024, 09:00 AM
      0 responses
      52 views
      0 likes
      Last Post seqadmin  
      Working...
      X