Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • PubMed: Current state-of-art of sequencing technologies for plant genomics research.

    Syndicated from PubMed RSS Feeds

    Current state-of-art of sequencing technologies for plant genomics research.

    Brief Funct Genomics. 2012 Jan;11(1):3-11

    Authors: Thudi M, Li Y, Jackson SA, May GD, Varshney RK

    Abstract
    A number of next-generation sequencing (NGS) technologies such as Roche/454, Illumina and AB SOLiD have recently become available. These technologies are capable of generating hundreds of thousands or tens of millions of short DNA sequence reads at a relatively low cost. These NGS technologies, now referred as second-generation sequencing (SGS) technologies, are being utilized for de novo sequencing, genome re-sequencing, and whole genome and transcriptome analysis. Now, new generation of sequencers, based on the 'next-next' or third-generation sequencing (TGS) technologies like the Single-Molecule Real-Time (SMRT™) Sequencer, Heliscope™ Single Molecule Sequencer, and the Ion Personal Genome Machine™ are becoming available that are capable of generating longer sequence reads in a shorter time and at even lower costs per instrument run. Ever declining sequencing costs and increased data output and sample throughput for NGS and TGS sequencing technologies enable the plant genomics and breeding community to undertake genotyping-by-sequencing (GBS). Data analysis, storage and management of large-scale second or TGS projects, however, are essential. This article provides an overview of different sequencing technologies with an emphasis on forthcoming TGS technologies and bioinformatics tools required for the latest evolution of DNA sequencing platforms.


    PMID: 22345601 [PubMed - in process]



    More...

Latest Articles

Collapse

  • seqadmin
    Current Approaches to Protein Sequencing
    by seqadmin


    Proteins are often described as the workhorses of the cell, and identifying their sequences is key to understanding their role in biological processes and disease. Currently, the most common technique used to determine protein sequences is mass spectrometry. While still a valuable tool, mass spectrometry faces several limitations and requires a highly experienced scientist familiar with the equipment to operate it. Additionally, other proteomic methods, like affinity assays, are constrained...
    04-04-2024, 04:25 PM
  • seqadmin
    Strategies for Sequencing Challenging Samples
    by seqadmin


    Despite advancements in sequencing platforms and related sample preparation technologies, certain sample types continue to present significant challenges that can compromise sequencing results. Pedro Echave, Senior Manager of the Global Business Segment at Revvity, explained that the success of a sequencing experiment ultimately depends on the amount and integrity of the nucleic acid template (RNA or DNA) obtained from a sample. “The better the quality of the nucleic acid isolated...
    03-22-2024, 06:39 AM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, 04-11-2024, 12:08 PM
0 responses
30 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 10:19 PM
0 responses
32 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-10-2024, 09:21 AM
0 responses
28 views
0 likes
Last Post seqadmin  
Started by seqadmin, 04-04-2024, 09:00 AM
0 responses
53 views
0 likes
Last Post seqadmin  
Working...
X