Hi all,
I'm working on differential expression analysis on bacterial transcriptome using cufflinks packages. However I found these result (table below) that confusing me. Some of the expression profiles reported in the cuffdiffs analysis are not consistent with the cufflinks analysis. Below is part of the combined results from cuffdiff (column 2- 10) and cufflinks (column 11 - 14).
For example in row no 9 (genet08), in cufflinks analysis FPKM in both sampleA replicates reported as high as 20000, but in cuffdiffs analysis the FPKM reported as 0. There are several rows in the table that show the same inconsistency between cuffdiffs and cufflinks analysis, I don't have the exact figure but i can estimate its around 5% of the total gene list have this kind of inconsistency.
Below is the command that I used to run cufflinks and cuffdiffs
cufflinks command (example for SampleA_r1)
cuffdiff command
Hope someone can share their thought on this.
Thanks in advance
- kamal
I'm working on differential expression analysis on bacterial transcriptome using cufflinks packages. However I found these result (table below) that confusing me. Some of the expression profiles reported in the cuffdiffs analysis are not consistent with the cufflinks analysis. Below is part of the combined results from cuffdiff (column 2- 10) and cufflinks (column 11 - 14).
Code:
no gene FPKM (sampleA) FPKM (sampleB) log2(fold_change) fold_change test_stat p_value q_value significant FPKM (SampleA-r1) FPKM (SampleA-r2) FPKM (SampleB-r1) FPKM (SampleB-r2) 1 gene0090 0 0.280696 1.79769e+308 #VALUE! 1.79769e+308 0.26143 1 no 11.2027 11.0176 6.73073 14.1696 2 gene0091 0 0 0 1 0 1 1 no 44.6099 57.6125 27.8334 30.6339 3 gene1910 0 0.440214 1.79769e+308 #VALUE! 1.79769e+308 0.134216 1 no 11.7053 14.0353 33.6464 45.4033 4 gene2086 0 0 0 1 0 1 1 no 2.29351 1.15464 0.654272 6.82639 5 gene2223 0 0.277117 1.79769e+308 #VALUE! 1.79769e+308 0.341546 1 no 0 0 0 0.660894 6 gene2488 0 0 0 1 0 1 1 no 10.4025 11.889 8.49335 17.6908 7 gene3116 0 2.19548 1.79769e+308 #VALUE! 1.79769e+308 0.270146 1 no 43.535 54.3667 31.5445 29.4442 8 gene3375 0 8.83927 1.79769e+308 #VALUE! 1.79769e+308 0.156186 0.371228 no 0 0 8.83593 8.62098 9 genet08 0 47943.9 1.79769e+308 #VALUE! 1.79769e+308 0.216948 0.441909 no 215745 289492 283647 224841 10 genet15 0 0 0 1 0 1 1 no 0 32165.7 0 44968.3 11 genet19 0 0 0 1 0 1 1 no 0 0 0 22484.1 12 genet30 0 20919.6 1.79769e+308 #VALUE! 1.79769e+308 0.26143 0.486515 no 34511.2 109316 0 49890.9 13 genet35 0 47943.9 1.79769e+308 #VALUE! 1.79769e+308 0.216948 0.441909 no 61641.3 0 81041.9 44968.3 14 gene1061 0 4.64699 1.79769e+308 #VALUE! 1.79769e+308 0.0974253 1 no 0 0 239.346 308.699 15 gene2057 0 0 0 1 0 1 1 no 10.5358 12.5268 7.81085 17.5835 16 gene1219 279.782 126.536 -1.14476 0.452264919 4.02067 5.80E-05 0.000723236 yes 294.917 272.507 98.3558 163.011 17 gene0454 281.243 122.751 -1.19608 0.436459592 4.50118 6.76E-06 0.000105364 yes 319.036 254.564 112.823 133.568 18 gene0696 281.492 119.564 -1.23531 0.424751221 4.65254 3.28E-06 5.51E-05 yes 299.484 271.801 101.908 141.367 19 gene1908 295.083 175.718 -0.747857 0.595487447 2.83873 0.0045293 0.0283197 yes 293.55 302.417 149.607 207.991 20 gene3330 298.322 59.7793 -2.31915 0.200385497 8.05916 6.66E-16 4.98E-14 yes 316.381 288.917 47.3887 75.7079 21 gene2943 304.366 157.484 -0.950603 0.517416153 3.27473 0.00105763 0.00865789 yes 286.907 325.549 166.413 140.802 22 gene1286a 304.854 1411.33 2.21087 4.629543685 -6.29067 3.16E-10 1.26E-08 yes 368.954 256.093 1544.83 1187.39 23 gene2931 307.767 74.4498 -2.0475 0.241902905 6.94379 3.82E-12 1.86E-10 yes 398.538 236.189 80.5042 63.9738 24 gene2526 310.296 73.1319 -2.08507 0.235684698 5.75042 8.90E-09 2.70E-07 yes 293.458 331.069 70.5113 74.949 25 gene3402 323.668 104.076 -1.63688 0.321551116 5.94465 2.77E-09 9.15E-08 yes 318.393 334.796 101.337 105.236 26 gene0394 324.037 294.276 -0.138986 0.90815723 0.301882 0.762742 0.881605 no 335.479 320.832 244.124 357.452 27 gene2014 324.814 336.958 0.0529539 1.037386787 -0.190118 0.849217 0.931596 no 345.453 313.737 348.649 311.732 28 gene0458 325.072 154.641 -1.07184 0.475711893 4.01458 5.96E-05 0.000732211 yes 364.987 297.467 128.933 186.893 29 gene3221 326.916 193.231 -0.758593 0.591072498 2.64956 0.00805976 0.0447439 yes 315.978 342.966 138.708 265.134 30 gene1964 330.623 151.484 -1.12602 0.458177971 3.99545 6.46E-05 0.000786006 yes 322.485 344.348 132.149 174.834
Below is the command that I used to run cufflinks and cuffdiffs
cufflinks command (example for SampleA_r1)
Code:
cufflinks -G combined.gtf SampleA_r1-accepted_hits.bam
Code:
cuffdiff -o SampleA-vs-SampleB-cufflinks cuffcmp.combined.gtf SampleA-r1-accepted_hits.bam,SampleA-r2-accepted_hits.bam SampleB-r1-accepted_hits.bam,SampleB-r2-accepted_hits.bam
Thanks in advance
- kamal
Comment