Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • DEXseq errors

    I've come across two errors while running DEXSeq that I haven't been able to resolve.

    Firstly, when looking at the results using DEXSeqResults, I find some NA in the expression value and log2fold columns, while p.value and padj are available.

    pvalue padj MT WT log2fold_MT_WT
    <numeric> <numeric> <numeric> <numeric> <numeric>
    2010010A06Rik:1 1.274581e-07 2.968773e-05 NA NA NA
    2010010A06Rik:2 2.271527e-04 1.387325e-02 NA NA NA

    Secondly, I have not been able to generate the HTML reports using the DEXSeqHTML command. It produces the following error:

    DEXSeqHTML(dxr1, fitExpToVar="condition", FDR=0.05,color=c("#FF000080", "#0000FF80"),path="DEX_seq/",file="DEU_res_SO.html")
    Error in data.frame(..., check.names = FALSE) :
    arguments imply differing number of rows: 214419, 0

    Has anyone come across something similar or have any suggestions on how to resolve these issues?

    Code:
    ## makeTranscriptDbFromGFF
    gffFile <- makeTranscriptDbFromGFF("Genome_files/Mus_musculus/UCSC/mm10/Annotation/Genes/genes.gtf", format="gtf")
    
    ## preparing exonic parts
    exonicParts <- disjointExons(gffFile, by="exon", aggregateGenes=TRUE)
    
    
    align <- "Samples"
    
    files <- list.files(path=align, pattern="*.bam", full.names=T, recursive=FALSE)
    
    bf1 <- BamFileList(c(files),index=character())
    
    
    genehits <- summarizeOverlaps(exonicParts, bf1, mode="Union", ignore.strand=FALSE, singleEnd=FALSE, inter.feature=FALSE, fragments=TRUE)
    
    colData(genehits)$condition <- c("WT", "MT", "WT", "MT", "WT", "MT")
    raw_dat <- assays(genehits)$counts
    
    conds <- c("WT1", "MT1", "WT2", "MT2", "WT3", "MT3")
    colnames(raw_dat) <- conds
    ## reorder columns
    raw_data <- cbind(raw_dat[,c(1,3,5)], raw_dat[,c(2,4,6)]) 
    
    
    geneID <- exonicParts$gene_id #-> contains gene id
    g <- unlist(geneID)
    exonID <- exonicParts$exonic_part # contains exon number
    
    nam <- paste(g,exonID, sep=":")
    
    rownames(raw_dat) <- nam
    
    #############################
    ### Generate DEXSeq object ##
    #############################
    
    sampleTable <- data.frame(row.names = conds, condition= factor(c("WT", "WT", "WT", "MT", "MT", "MT")))
    design <- formula(~ sample + exon + condition:exon)
    dxd <- DEXSeqDataSet(raw_data,sampleTable, design, featureID= as.character(exonID), groupID= g)
    
    ######################
    ### Perform testing ##
    ######################
    
    dxd <- estimateSizeFactors(dxd)
    dxd <- estimateDispersions(dxd)
    
    dxd <- testForDEU(dxd)
    dxd <- estimateExonFoldChanges(dxd, fitExpToVar="condition")
    dxr1 = DEXSeqResults( dxd )
    
    
    ##################
    ## save results ##
    ##################
    
    DEXSeqHTML(dxr1, fitExpToVar="condition", FDR=0.05,color=c("#FF000080", "#0000FF80"),path="/DEX_seq/",file="DEU_res_SO.html")

    My sessionInfo is as following

    Code:
    > sessionInfo()
    R version 3.1.0 (2014-04-10)
    Platform: x86_64-unknown-linux-gnu (64-bit)
    
    locale:
     [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
     [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
     [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
     [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
     [9] LC_ADDRESS=C               LC_TELEPHONE=C            
    [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
    
    attached base packages:
    [1] parallel  stats     graphics  grDevices utils     datasets  methods  
    [8] base     
    
    other attached packages:
     [1] GenomicAlignments_1.0.1   BSgenome_1.32.0          
     [3] Rsamtools_1.16.0          Biostrings_2.32.0        
     [5] XVector_0.4.0             biomaRt_2.20.0           
     [7] rtracklayer_1.24.2        GenomicFeatures_1.16.2   
     [9] AnnotationDbi_1.26.0      DEXSeq_1.10.6            
    [11] BiocParallel_0.6.1        DESeq2_1.4.5             
    [13] RcppArmadillo_0.4.300.8.0 Rcpp_0.11.2              
    [15] GenomicRanges_1.16.3      GenomeInfoDb_1.0.2       
    [17] IRanges_1.22.8            Biobase_2.24.0           
    [19] BiocGenerics_0.10.0      
    
    loaded via a namespace (and not attached):
     [1] annotate_1.42.0    BatchJobs_1.2      BBmisc_1.6         bitops_1.0-6      
     [5] brew_1.0-6         codetools_0.2-8    DBI_0.2-7          digest_0.6.4      
     [9] fail_1.2           foreach_1.4.2      genefilter_1.46.1  geneplotter_1.42.0
    [13] grid_3.1.0         hwriter_1.3        iterators_1.0.7    lattice_0.20-29   
    [17] locfit_1.5-9.1     plyr_1.8.1         RColorBrewer_1.0-5 RCurl_1.95-4.1    
    [21] RSQLite_0.11.4     sendmailR_1.1-2    splines_3.1.0      statmod_1.4.20    
    [25] stats4_3.1.0       stringr_0.6.2      survival_2.37-7    tools_3.1.0       
    [29] XML_3.98-1.1       xtable_1.7-3       zlibbioc_1.10.0
    Last edited by Anomilie; 07-15-2014, 10:14 PM.

  • #2
    I get the exact same error when writing the HTML report. How did you solve this?

    > DEXSeqHTML( dxr, FDR=0.1, color=c("#FF000080", "#0000FF80") )
    Error in data.frame(..., check.names = FALSE) :
    arguments imply differing number of rows: 249794, 0

    Comment


    • #3
      Originally posted by Darwin View Post
      I get the exact same error when writing the HTML report. How did you solve this?

      > DEXSeqHTML( dxr, FDR=0.1, color=c("#FF000080", "#0000FF80") )
      Error in data.frame(..., check.names = FALSE) :
      arguments imply differing number of rows: 249794, 0
      I solved this problem by using the transcripts and featureRanges arguments in the DEXSeqDataSet function. For some reason this information doesn't get transferred when using SummarizeOverlaps as the counting method.

      The code is as following:

      Code:
      # generate the gtf variable using standard methods
      gffFile <- makeTranscriptDbFromGFF("/home/ewilkie/sandrive/bioinformatics/ewilkie/Kenny/Genome_files/Mus_musculus/UCSC/mm10/Annotation/Genes/genes.gtf", format="gtf")
      exonicParts <- disjointExons(gffFile , aggregateGenes=FALSE)
      
      ## generate transcript annotation
      transcripts <- as.list(exonicParts$tx_name)
      
      ## generate featureRanges annotation 
      t <- as.data.frame(exonicParts)    
      test_ranges <- GRanges(seqnames= t$seqnames, IRanges(start=t$start, end=t$end,names=t$gene_id), strand=t$strand)  
      
      ## set DEXseqDataSet variable
      dxd <- DEXSeqDataSet(raw_data,sampleTable, design, featureID= as.character(exonID), groupID= geneID,  transcripts=transcripts, featureRanges=test_ranges)
      
      ## perform the same analysis and call DEXseqHTML as you did before
      Hope this helps

      Comment


      • #4
        Alternatively, you can specify "flattenedfile" option when reading the dexseq object not to get this error:

        Code:
        DEXSeqDataSetFromHTSeq(countfiles = file.path( inDir, countFiles ), sampleData = sampleData, design = ~ sample + exon + type:exon + condition:exon, [COLOR="Red"]flattenedfile = flattenedfile[/COLOR])
        which is the annotation file that was originated with the script "dexseq_prepare_annotation.py".

        Comment

        Latest Articles

        Collapse

        • seqadmin
          Advancing Precision Medicine for Rare Diseases in Children
          by seqadmin




          Many organizations study rare diseases, but few have a mission as impactful as Rady Children’s Institute for Genomic Medicine (RCIGM). “We are all about changing outcomes for children,” explained Dr. Stephen Kingsmore, President and CEO of the group. The institute’s initial goal was to provide rapid diagnoses for critically ill children and shorten their diagnostic odyssey, a term used to describe the long and arduous process it takes patients to obtain an accurate...
          12-16-2024, 07:57 AM
        • seqadmin
          Recent Advances in Sequencing Technologies
          by seqadmin



          Innovations in next-generation sequencing technologies and techniques are driving more precise and comprehensive exploration of complex biological systems. Current advancements include improved accessibility for long-read sequencing and significant progress in single-cell and 3D genomics. This article explores some of the most impactful developments in the field over the past year.

          Long-Read Sequencing
          Long-read sequencing has seen remarkable advancements,...
          12-02-2024, 01:49 PM

        ad_right_rmr

        Collapse

        News

        Collapse

        Topics Statistics Last Post
        Started by seqadmin, 12-17-2024, 10:28 AM
        0 responses
        25 views
        0 likes
        Last Post seqadmin  
        Started by seqadmin, 12-13-2024, 08:24 AM
        0 responses
        42 views
        0 likes
        Last Post seqadmin  
        Started by seqadmin, 12-12-2024, 07:41 AM
        0 responses
        28 views
        0 likes
        Last Post seqadmin  
        Started by seqadmin, 12-11-2024, 07:45 AM
        0 responses
        42 views
        0 likes
        Last Post seqadmin  
        Working...
        X