Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Discovery of miRNA Regulatory Networks by Integrating High-Throughput Data

    Abstract:

    MicroRNAs (miRNAs) are endogenous non-coding RNAs (ncRNAs) of approximately 22 nt that regulate the expression of a large fraction of genes by targeting messenger RNAs (mRNAs). However, determining the biologically significant targets of miRNAs is an ongoing challenge. In this chapter, we describe how to identify miRNA-target interactions and miRNA regulatory networks from high-throughput deep sequencing, CLIP-Seq (HITS-CLIP, PAR-CLIP) and degradome sequencing data using starBase platforms. In starBase, several web-based and stand-alone computational tools were developed to discover Argonaute (Ago) binding and cleavage sites, miRNA-target interactions, perform enrichment analysis of miRNA target genes in Gene Ontology (GO) categories and biological pathways, and identify combinatorial effects between Ago and other RNA-binding proteins (RBPs). Investigating target pathways of miRNAs in human CLIP-Seq data, we found that many cancer-associated miRNAs modulate cancer pathways. Performing an enrichment analysis of genes targeted by highly expressed miRNAs in the mouse brain showed that many miRNAs are involved in cancer-associated MAPK signaling and glioma pathways, as well as neuron-associated neurotrophin signaling and axon guidance pathways. Moreover, thousands of combinatorial binding sites between Ago and RBPs were identified from CLIP-Seq data suggesting RBPs and miRNAs coordinately regulate mRNA transcripts. As a means of comprehensively integrating CLIP-Seq and Degradome-Seq data, the starBase platform is expected to identify clinically relevant miRNA-target regulatory relationships, and reveal multi-dimensional post-transcriptional regulatory networks involving miRNAs and RBPs. starBase is available at http://starbase.sysu.edu.cn/ .

    Discovery of microRNA Regulatory Networks by Integrating Multidimensional High-Throughput Data.
    Adv Exp Med Biol. 2013;774:251-66.
    PMID: 23377977

Latest Articles

Collapse

  • seqadmin
    Advancing Precision Medicine for Rare Diseases in Children
    by seqadmin




    Many organizations study rare diseases, but few have a mission as impactful as Rady Children’s Institute for Genomic Medicine (RCIGM). “We are all about changing outcomes for children,” explained Dr. Stephen Kingsmore, President and CEO of the group. The institute’s initial goal was to provide rapid diagnoses for critically ill children and shorten their diagnostic odyssey, a term used to describe the long and arduous process it takes patients to obtain an accurate...
    12-16-2024, 07:57 AM
  • seqadmin
    Recent Advances in Sequencing Technologies
    by seqadmin



    Innovations in next-generation sequencing technologies and techniques are driving more precise and comprehensive exploration of complex biological systems. Current advancements include improved accessibility for long-read sequencing and significant progress in single-cell and 3D genomics. This article explores some of the most impactful developments in the field over the past year.

    Long-Read Sequencing
    Long-read sequencing has seen remarkable advancements,...
    12-02-2024, 01:49 PM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, 12-17-2024, 10:28 AM
0 responses
26 views
0 likes
Last Post seqadmin  
Started by seqadmin, 12-13-2024, 08:24 AM
0 responses
43 views
0 likes
Last Post seqadmin  
Started by seqadmin, 12-12-2024, 07:41 AM
0 responses
29 views
0 likes
Last Post seqadmin  
Started by seqadmin, 12-11-2024, 07:45 AM
0 responses
42 views
0 likes
Last Post seqadmin  
Working...
X