Seqanswers Leaderboard Ad

Collapse

Announcement

Collapse
No announcement yet.
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • PubMed: Advantages and limitations of next-generation sequencing technologies: A comp

    Syndicated from PubMed RSS Feeds

    Related Articles Advantages and limitations of next-generation sequencing technologies: A comparison of electrophoresis and non-electrophoresis methods.

    Electrophoresis. 2008 Dec 3;29(23):4618-4626

    Authors: Hert DG, Fredlake CP, Barron AE

    The reference human genome provides an adequate basis for biological researchers to study the relationship between genotype and the associated phenotypes, but a large push is underway to sequence many more genomes to determine the role of various specificities among different individuals that control these relationships and to enable the use of human genome data for personalized and preventative healthcare. The current electrophoretic methodology for sequencing an entire mammalian genome, which includes standard molecular biology techniques for genomic sample preparation and the separation of DNA fragments using capillary array electrophoresis, remains far too expensive ($5 million) to make genome sequencing ubiquitous. The National Human Genome Research Institute has put forth goals to reduce the cost of human genome sequencing to $100 000 in the short term and $1000 in the long term to spur the innovative development of technologies that will permit the routine sequencing of human genomes for use as a diagnostic tool for disease. Since the announcement of these goals, several companies have developed and released new, non-electrophoresis-based sequencing instruments that enable massive throughput in the gathering of genomic information. In this review, we discuss the advantages and limitations of these new, massively parallel sequencers and compare them with the currently developing next generation of electrophoresis-based genetic analysis platforms, specifically microchip electrophoresis devices, in the context of three distinct types of genetic analysis.

    PMID: 19053153 [PubMed - as supplied by publisher]



    More...

Latest Articles

Collapse

  • seqadmin
    Choosing Between NGS and qPCR
    by seqadmin



    Next-generation sequencing (NGS) and quantitative polymerase chain reaction (qPCR) are essential techniques for investigating the genome, transcriptome, and epigenome. In many cases, choosing the appropriate technique is straightforward, but in others, it can be more challenging to determine the most effective option. A simple distinction is that smaller, more focused projects are typically better suited for qPCR, while larger, more complex datasets benefit from NGS. However,...
    10-18-2024, 07:11 AM
  • seqadmin
    Non-Coding RNA Research and Technologies
    by seqadmin




    Non-coding RNAs (ncRNAs) do not code for proteins but play important roles in numerous cellular processes including gene silencing, developmental pathways, and more. There are numerous types including microRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA), and more. In this article, we discuss innovative ncRNA research and explore recent technological advancements that improve the study of ncRNAs.

    Nobel Prize for MicroRNA Discovery
    This week,...
    10-07-2024, 08:07 AM

ad_right_rmr

Collapse

News

Collapse

Topics Statistics Last Post
Started by seqadmin, Yesterday, 05:31 AM
0 responses
10 views
0 likes
Last Post seqadmin  
Started by seqadmin, 10-24-2024, 06:58 AM
0 responses
20 views
0 likes
Last Post seqadmin  
Started by seqadmin, 10-23-2024, 08:43 AM
0 responses
51 views
0 likes
Last Post seqadmin  
Started by seqadmin, 10-17-2024, 07:29 AM
0 responses
58 views
0 likes
Last Post seqadmin  
Working...
X